• Title/Summary/Keyword: Synchronous Controller

Search Result 652, Processing Time 0.032 seconds

Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System (강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기)

  • Park, Ki-Kwang;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

Design of a Surface-Mounted PMSM Current Controller Using Uncertainty Estimation with a PI Observer (PI 관측기의 불확실성 추정을 이용한 표면부착형 영구자석 동기기의 전류 제어기 설계)

  • Kim, In-Hyuk;Choi, Dae-Sik;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1011-1016
    • /
    • 2011
  • This paper presents a robust current controller for a surface-mounted permanent magnet synchronous motor(SPMSM) by using a PI observer. The decoupling PI(proportional-integral) controller combined with an additional feed-forward compensation has been used for the current controller. The classical feed-forward compensation using velocity information and system parameters is not expected to achieve a robust performance against parameter uncertainties. This paper has adopted a PI observer for the feed-forward compensation to cope with parameter uncertainties without using velocity information. A simple PI observer has been designed to compensate the disturbances that represent velocity coupled terms and parameter uncertainties. Experimental results as well as computer simulations with 630W SPMSM confirm that the proposed approach can deal with the effects of the disturbance and improve the control performance.

Efficiency optimization control of SynRM using ALM-FNN controller (ALM-FNN 제어기를 이용한 SynRM의 효율 최적화 제어)

  • Park, Byung-Sang;Park, Ki-Tae;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.306-310
    • /
    • 2007
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism-fuzzy neural networks(ALM-FNN) controller that is implemented using adaptive, fuzzy control and neural networks. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF

Implementation of a No Pulse Competition CPS-SPWM Technique Based on the Concentrated Control for Cascaded Multilevel DSTATCOMs

  • Wang, Yue;Yang, Kun;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1139-1146
    • /
    • 2014
  • Digital signal processor (DSP) and field programmable gate array (FPGA) based concentrated control systems are designed for implementing CPS-SPWM strategies. The self-defined universal asynchronous receiver/transmitter (UART) protocol is used for communication between a master controller and an individual module controller via high speed links. Aimed at undesired pulse competition, this paper analyzes its generation mechanism and presents a new method for eliminating competition pulses with no time delay. Finally, the proposed concentrated controller is applied to a 10kV/10MVar distribution static synchronous compensator (DSTATCOM) industrial prototype. Experimental results show the accuracy and reliability of the concentrated controller, and verify the superiority of the proposed elimination method for competition pulses.

Enhanced Proportional-Resonant Current Controller for Unbalanced Stand-alone DFIG-based Wind Turbines

  • Phan, Van-Tung;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.443-450
    • /
    • 2010
  • An enhanced control strategy for variable-speed unbalanced stand-alone doubly-fed induction generator-based wind energy conversion systems is proposed in this paper. The control scheme is applied to the rotor-side converter to eliminate stator voltage imbalance. The proposed current controller is developed based on the proportional-resonant regulator, which is implemented in the stator stationary reference frame. The resonant controller is tuned at the stator synchronous frequency to achieve zero steady-state errors in rotor currents without decomposing the positive and negative sequence components. The computational complexity of the proposed control algorithm is greatly simplified, and control performance is significantly improved. Finally, simulations and experimental results are presented to verify the feasibility and the robustness of the proposed control scheme.

Sensorless Vector Control of IPMSM Drive with Adalptive Fuzzy Controller (적응 퍼지제어기에 의한 IPMSM 드라이브의 쎈서리스 벡터제어)

  • Kim Jong-Gwan;Park Byung-Sang;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.98-106
    • /
    • 2006
  • This paper proposes to position and speed control of interior Permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. Also, this paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of PMSM drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. A Gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor. A Gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Controller Performance Analysis of 3-level inverter STATCOM for balancing DC Link Voltage (3-레벨 인버터식 STATCOM의 상.하단 직류캐패시터의 전압평형유지를 위한 제어기 특성 분석)

  • 이준기;한병문;김성남
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.107-113
    • /
    • 2001
  • This paper describes dynamic performance analysis of a STATCOM based on 3-level inverter. Major attention is focused on the controller design for 3-level inverter, including regulator design for voltage sharing across the dc link capacitors. A detailed simulation model was developed with Matlab and a scaled hardware model was built and tested to verify the proposed approach. Both simulation and experimental results confirm that the developed controller can regulate the reactive power. The developed controller could be effectively applied to the actual hardware system for STATCOM.

  • PDF

Design of the Control System for STATCOM (STATCOM용 제어시스템 개발)

  • Lee, Jong-Hak;Kim, Yun-Hyun;Kim, Tae-Hyeong;Kwon, Byung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.534-535
    • /
    • 2013
  • 본 논문은 당사에서 개발한 5Mvar급 STATCOM(static synchronous compensator)의 제어 시스템에 대해 기술한다. 제작된 5Mvar급 STATCOM은 한 상당 12대의 HBI(H-Bridge Inverter)로 구성이 가능하도록 25-Level로 제작되었다. 제안된 제어시스템은 DSP(digital signal processor)를 이용하였으며, 하나의 Main Controller와 다수의 Cell Controller, FPGA 보드 등으로 구성되어 있다. Controller 간의 상호 정보를 교환하기 위해 eCAN 통신을 이용하였고, HBI의 스위칭을 위한 보드는 각각에 연결되어 있으며, Cell Controller보드와는 절연을 위해 광신호로 연결하였다. 본 논문에서는 개발한 제어시스템의 신뢰성을 검증하기 위한 실험을 진행하였다.

  • PDF

Design of a Robust STATCOM Supplementary Controller to Suppress the SSR in the Series-compensated System (직렬 보상 선로에서의 SSR 억제를 위한 강인한 STATCOM 보조 제어기의 설계)

  • Seo, Jang-Cheol;Mun, Seung-Il;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.136-141
    • /
    • 2000
  • This paper presents the design of an H$\infty$ based robust Static Synchronous Compensator (STATCOM) supplementary controller to suppress the subsynchronous resonance (SSR) in the series-compensated system. The IEEE second benchmark, System-l model is employed for this study. In order to design the effective controller, the modal controllability and observability indices to the oscillation modes are considered. Comprehensive time domain simulations using a nonlinear system model that the proposed STATCOM supplementary controller can suppress the SSR efficiently in spite of the variations of power system operating conditions.

  • PDF