• Title/Summary/Keyword: Synchronous Controller

Search Result 652, Processing Time 0.029 seconds

A Design of Optimal Fuzzy-PI Controller to Improve System Stability of Power System with Static VAR Compensator (SVC를 포함한 전력시스템의 안정도 향상을 위한 최적 퍼지-PI 제어기의 설계)

  • Kim, Hai-Jai;Joo, Seok-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.3
    • /
    • pp.122-128
    • /
    • 2004
  • This paper presents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors(TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be based on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and applied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.

Anti-windup for Complex Vector Synchronous Frame PI Current Controller (복소 벡터 동기좌표계 비례 적분 전류 제어기의 안티와인드업 이득 설정)

  • Yoo, Hyun-Jae;Jeong, Yu-Seok;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.404-408
    • /
    • 2006
  • This paper presents an anti-windup gain selection method for a complex vector synchronous frame PI current controller. The complex vector PI current controller is more robust to the parameter variation than the state feedback decoupling PI current controller. The complex vector PI current controller also includes an integral term, which can results in windup problem when the controller is saturated due to physical limitation of the system. Furthermore, even an anti-windup is utilized, inappropriate gain can deteriorate the performance of the current controller. Therefore, appropriate anti-windup gain selection method for a complex vector current controller has been proposed based on the mathematical description of the current control system. The superior performance of the current control system with the proposed anti-windup gain has been verified by the experimental results.

Design of PI Speed Controller with High Speed Response in High Performance Motor Driving System (고성능 전동기 구동 시스템에서 빠른 응답을 가지는 PI 속도제어기 설계)

  • 조내수;박철우;구본호;임성운;권우현
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2765-2768
    • /
    • 2003
  • The PI controller has many trial-and-error steps for gain design. This paper proposes a new design concept. In this method, a degree of stability and Kharitonov theory are applied and the controller gain is directly expressed by system parameters and current controller's bandwidth. Simulation results for permanent magnetic synchronous motor(PMSM) driving systems confirm the validity of proposed method.

  • PDF

Design of SDRAM Controller in HDL (HDL을 이용한 SDRAM Controller의 설계)

  • 김용국;오경욱;이영희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.753-756
    • /
    • 1999
  • In this research we designed and synthesized an effective Synchronous DRAM controller for Interleaved Column Mode Access with VHDL. When target device was ALTERA CPLD MA$\times$712 105 logic cells were used. The result of the simulation at 66MHz clock operation, the clock-to-output time t$_{co}$ was 4.5㎱ and the SDRAM controller was in good working order.r. good working order.

  • PDF

Input-Output Feedback Linearizing Controller Design of a Power System Using a Modified Voltage Equation (수정한 전압방정식을 이용한 발전기의 입출력 귀환선형화 제어기 설계)

  • Kim, Seok-Kyoon;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.183-185
    • /
    • 2006
  • This paper presents a SISO nonlinear controller for the power system consisting of a synchronous generator connected to an infinite bus. The proposed controller is based on input-output feedback linearization, with a modified version of the terminal voltage equation used as the output. The resulting closed-loop has no internal dynamics, and thus stability is guaranteed. The controller performance is seen to be effective through simulations.

  • PDF

PMSM Position Control with a SUI PID Controller

  • Abu El-Sebah, Mohamed I.
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper introduces the application of a SUI PID controller for permanent magnet (PM) drive systems. The drive system model is developed via FO control. Simulation of the system is carried out to predict the performance at no load and under load. The results and comparisons indicate that application of a SUI PID controller is effective for sensorless PM drive systems.

Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives

  • Zheng, Changming;Zhang, Jiasheng
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1075-1085
    • /
    • 2018
  • To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.

Design of an Adaptive Backstepping Controller for Doubly-Fed Induction Machine Drives

  • Dehkordi, Behzad Mirzaeian;Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.343-353
    • /
    • 2009
  • In this paper, a nonlinear controller is proposed for Doubly-Fed Induction Machine (DFIM) drives. The nonlinear controller is designed based on an adaptive backstepping control technique, using a fifth order model of an induction machine in the synchronous d & q axis rotating reference frame, whose d axis coincides with the space voltage vector of the main AC supply, and using the rotor current and stator flux components as state variables. The nonlinear controller can perfectly track the torque reference signal measured in the stator terminals under the condition of unity power factor regulation, in spite of the stator and rotor resistance variations. In order to make the drive system capable of operating in the motoring and generating modes below and above the synchronous speed, two level Space-Vector PWM (SV-PWM) back-to-back voltage source inverters are employed in the rotor circuit. It is confirmed through computer simulation results that the proposed control approach is effective and valid.