• Title/Summary/Keyword: Synchronous Control

Search Result 1,730, Processing Time 0.024 seconds

A Maximum Torque Control of Synchronous Reluctance Motors Considering Magnetic Saturation (동기릴럭턴스전동기의 자기포화를 고려한 최대토크제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.89-94
    • /
    • 2014
  • This paper presents a synchronous reluctance motor drive for maximum torque to current (MTC) considering magnetic saturation. Measured d-axis and q-axis inductances are used to obtain current angle vs. maximum torque curve using torque equation. Maximum torque to current control is achieved by the current angle and stator current for maximum torque from the current angle vs. maximum torque curve at a given torque reference.

A Braking Algorithm of a PM synchronous Motor (영구자석 동기전동기의 제동 알고리듬)

  • 조관열;양순배;홍찬희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.313-321
    • /
    • 2002
  • A braking algorithm for a PM synchronous motor is presented. The resistance of the stator windings operates as a braking resistors and dissipates the regenerated power from the rotor without any braking components including the electronic power components and control circuits. The proposed braking algorithm maximizes the power dissipation in the stator windings and also generates the maximum braking torque under the limit conditions of DC link capacitor voltage and inverter currents so that it can minimize the braking time.

Study of Developing Control Algorithm for Pumped-storage Synchronous Motor Drive

  • Park Shin-Hyun;Park Yo-Jip;Kim Jang-Mok;Baek Kwang-Ryul;Lim Ik-Hun;Ryu Ho-Seon
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.84-89
    • /
    • 2005
  • This paper presents a control algorithm for a large salient-pole synchronous motor fed by a Load Commutated Inverter (LCI). Many papers have been presented in the past few years on the justification, design, and application of variable-speed drive. The focus of this paper is on high torque operation and the estimation of initial rotor position. The results of simulation indicate that it is possible to produce the maximum torque and estimate the initial rotor position.

An Improved Flux Observer for Sensorless Permanent Magnet Synchronous Motor Drives with Parameter Identification

  • Lin, Hai;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.516-523
    • /
    • 2013
  • This paper investigates an improved stator flux linkage observer for sensorless permanent magnet synchronous motor (PMSM) drives using a voltage-based flux linkage model and an adaptive sliding mode variable structure. We propose a new observer design that employs an improved sliding mode reaching law to achieve better estimation accuracy. The design includes two models and two adaptive estimating laws, and we illustrate that the design is stable using the Popov hyper-stability theory. Simulation and experimental results demonstrate that the proposed estimator accurately calculates the speed, the stator flux linkage, and the resistance while overcoming the shortcomings of traditional estimators.

Sensorless Vector Control Parameters Estimation of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (유한요소법(FEM)과 프라이자흐모델을 사용한 동기형 릴럭턴스 모터의 센서리스 백터제어 제정수 산정)

  • Kim, Hong-Seok;Park, Jung-Min;Lee, Min-Myung;Lee, Jung-Ho;Chun, Jang-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.673-674
    • /
    • 2006
  • This study investigates the dynamic characteristics of Synchronous Reluctance Motor (SynRM), with segmental rotor structure, using finite element method in which the moving mesh technique is considered. The focus of this paper is the sensorless vector control parameters estimation of SynRM under saturation and iron loss. Comparisons are given with dynamic characteristics of normal single B-H nonlinear solutions and those of proposed FEM & Preisach model of synchronous reluctance motor, respectively.

  • PDF

Inverter Losses Reduction for Rectangular Drive BLDCM using Synchronous Rectification (구형파 구동 BLDCM의 동기정류를 사용한 인버터 손실 저감)

  • Nam, Myung-Joon;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.117-125
    • /
    • 2016
  • In this paper, the inverter switch losses of BLDC motor for three types of PWM methods and power devices were analyzed. When the BLDC motor is driven at low currents, the inverter switch losses for MOSFET are low because MOSFET operates like resistance. However, the inverter switch losses for IGBT are higher than MOSFET due to its large turn-off losses. Moreover, synchronous rectification switching method is adaptable because MOSFET has 2-channel. So, MOSFET can be driven with more low impedance and losses. For low power inverter with MOSFET, the power losses of unified PWM are lower than that of unipolar and bipolar PWM. Proposed method and losses analysis results are verified by examination and simulation using Matlab/Simulink.

Design of Synchronous Network System based on SDH (SDH 기반의 동기식 네트워크 시스템 구현)

  • Kim, Jeong-Dong;Kwon, J.;Choi, T.;Huh, W.;Kim, J.
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.417-420
    • /
    • 2002
  • In this paper, we implemented a SDH synchronous network system based on ITU-T recommendation G.707 - Network node interface for the synchronous digital archy(SDH). For the system, we used signal processing SDH ASIC, and designed a FPGA_Control chip for various signal control and a FPGA_Alignment cllip for data alignment using YHDL(Very high speed integrated circuit Hardware Description Language). For system monitoring, an operation system was developed using ANSI C and executed in CPU (Motorola MPC-860). The system was evaluated by using ANT-20 for data transmission error defection, jitter detection, pointer chocking, and overhead determination.

  • PDF

A Study on the Load Torque Observer based on Fuzzy Logic Control for a PM Synchronous Motor (영구자석 동기전동기를 위한 퍼지 제어기법 기반의 부하 토크관측기에 관한 연구)

  • Jung, Jin-Woo;Lee, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). A Linear Matrix Inequality(LMI) parameterization of the fuzzy observer gain is given, and the LMI conditions are derived for the existence of the fuzzy load torque observer guaranteeing $\alpha$-stability and linear quadratic performance. In this paper, a nonlinear speed controller is employed to validate the performance of the proposed fuzzy load torque observer, and various simulation results are presented under motor parameter and load torque variations.

Implementation of Thrust Ripple Reduction for a Permanent Magnet Linear Synchronous Motor Using an Adaptive Feed Forward Controller

  • Baratam, Arundhati;Karlapudy, Alice Mary;Munagala, Suryakalavathi
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.687-694
    • /
    • 2014
  • This paper focuses on the analysis and compensation of thrust ripples in permanent magnet linear synchronous motors (PMLSM). The main drawback in PMLSMs is the presence of thrust ripples, which are mainly due to the interaction between the permanent magnets and armature slotted core. These thrust ripples reduce the performance of the drive system in high precision applications especially at low speeds. This paper analyzes thrust ripples using the discrete wavelet transform. These undesired thrust ripples are compensated by using an adaptive feed forward controller. It is observed that this novel controller reduces about 65 percent of the thrust ripples. An extensive simulation is performed through MATLAB and it is validated through experimental results using a d-SPACE system with a DS1104 control board.

Comparison of FPGA-based Direct Torque Controllers for Permanent Magnet Synchronous Motors

  • Utsumi Yoshiharu;Hoshi Nobukazu;Oguchi Kuniomi
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.114-120
    • /
    • 2006
  • This paper compares two types of direct torque controllers for permanent magnet synchronous motors(PMSMs). These controllers both use a single-chip FPGA(Field Programmable Gate Array) but have differing hardware configurations. One of the controllers was constructed by programming a soft-core CPU and hardware logic circuits written in VHDL(Very high speed IC Hardware Description Language), while the other was constructed of only hardware logic circuits. The characteristics of these two controllers were compared in this paper. The results show the controller constructed of only hardware logic circuits was able to shorten the control period and it was able to suppress the low torque ripple.