• Title/Summary/Keyword: Synchronous Control

Search Result 1,730, Processing Time 0.025 seconds

A Robust Control of PM Synchronous Motor Using Accelerating Torque Feedback (가속 토오크 궤환을 이용한 영구자석 동기전동기의 강인제어)

  • Chung, Se-Kyo;Kim, Chang-Gyun;Park, Hee-Jung;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.571-573
    • /
    • 1996
  • A robust control technique of the PM synchronous motor is presented using an accelerating torque feedback. The accelerating torque is estimated by using an adaptive torque observer and then this estimated torque is controlled by a VSC technique. By employing the proposed torque control, the speed control performance of the motor is improved and the load independency can be realized. The simulations carried out for the PM synchronous motor to verily the effectiveness of the proposed control.

  • PDF

Maximum Torque Control of Synchronous Reluctance Motor including iron loss and saturation (철손과 포화를 고려한 동기 릴럭턴스 모터의 최대토크제어)

  • Baek, Dong-Gi;Kim, Min-Tae;Hwang, Yeong-Seong;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.116-122
    • /
    • 2000
  • In the high speed range for salient type synchronous reluctance motor, the effect of iron loss can not be negligible. We have investigated the voltage equations including iron loss from the model that is added the equivalent iron loss in the equivalent inductance in series. In this paper, we derive Ld linear approximate equation from saturation range of Ld, Lq vs applied voltage characteristics and obtain equations including saturation and iron loss related to maximum torque control using Ld. The effect of saturation and iron loss is investigated under maximum torque control. And we show that the proposed maximum torque control scheme achieves the desired performances through experimental results.

  • PDF

Damping Oscillation of Power System by Robust Control of SSSC (강인 제어에 의한 Static Synchronous Series Compensator의 전력계통 동요 억제)

  • Kim, Hak-Man;Oh, Tae-Kyoo;Kook, Kyung-Soo;Jeon, Jin-Hong;Jang, Byung-Hoon;Chu, Jin-Bu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1035-1038
    • /
    • 1999
  • To improve the damping of all poorly damped oscillation modes, a control strategy of Static Synchronous Series Compensator (SSSC) based on energy method is presented in this Paper As a synchronous voltage-sourced inverter, SSSC is used to provide controllable series compensation. SSSC can provide controllable compensating voltage over an identical capacitive and inductive range. The damping effect of control strategy based on energy function is robustness with respect to loading condition, fault location and network configuration. Furthermore, the control inputs are based on local signals. In two area system, the effect of damping inter-area mode oscillation is demonstrated by the robust control strategy of SSSC.

  • PDF

Single Electronic Drive Controlling Two Synchronous Motors Via Modified Vector Control

  • Danbing Seto;Fanping Sun;Jacek F. Gieras;Norbert A.M. Hootsmans
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • A novel control scheme of using a single electronic drive to synchronize two synchronous motors is investigated analytically. The developed control strategy extends the conventional vector control technology, Specifically, it utilizes the property that the motion of two motors can be independently controlled by the q-axis currents provided the desired q-axis currents can be achieved by adjusting physical armature currents. The latter part is indeed guaranteed by adding a position offset to one of the motors. This work has a potential of cost saving in practice where the cost of drive is a major concern.

Loss Minimizing Vector Control of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 최소 손실 벡터제어)

  • Chung, Euihoon;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • This paper presents a loss-minimizing vector control method for interior permanent magnet synchronous motor (IPMSM). Conventionally, maximum torque per ampere (MTPA) control, which minimizes copper loss, has been widely used in industry. Iron loss, however, is not considered in MTPA control. In this paper, the loss model, including iron loss and copper loss, is derived to further reduce drive loss. The loss-minimizing vector controller is implemented based on the loss model. The controller generates optimal current vectors according to the operating conditions. The performance and validity of the proposed method are proved by experimental results through comparison with conventional methods.

Sensorless Speed Control of Permanent Magnet Synchronous Motor by an Improved Sliding Mode Observer (개선된 슬라이딩 모드 관측기에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Kim Young-Sam;Ryu Sung-Lay;Kwon Young-Ahn
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.687-690
    • /
    • 2004
  • Many studies have been performed for the elimination of speed and position sensors which require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. This paper investigates an improved sliding mode observer for the sensorless speed control of a permanent magnet synchronous motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed algorithm is verified through the simulation and experimentation.

CM Forward ZVS-MRC with Synchronous Rectifier (동기 정류기를 이용한 클램프 모드 포워드 영전압 스위칭 다중 공진형 컨버터)

  • Ahn, Kang-Soon;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.395-399
    • /
    • 1996
  • The Clamp Mode(CM) Forward Zero Voltage Switching Multi Resonant Converter(ZVS-MRC) with self-driven synchronous rectifier in studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET linear model and is compared with the loss at the conventional schottky diode rectification stage of the converter. From the results of the analysis, it is known that the use of MOSFETs as a synchronous rectifier reduces the loss at the rectification stage over the whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validity of the analysis, we have built a 33W(3.3V/10A) CM Forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. From the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

High Efficiency Half-bridge DC-DC Converter for an LED Backlight Drive System of LCD Module Inspection Equipment (LCD 모듈 검사장비용 LED 백라이트 드라이브 시스템을 위한 고효율 반브리지 직류-직류 전력변환기)

  • Yoo, Doo-Hee;Jeong, Gang-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.535-542
    • /
    • 2008
  • This paper presents a high efficiency half-bridge DC-DC converter for an LED backlight drive system of LCD module inspection equipment. The proposed converter improves the converter efficiency using characteristics of the asymmetrical half-bridge converter and the self-driven synchronous rectifier, and thus improves the total efficiency of the LED backlight drive system. The synchronous rectifier applied to the proposed converter is the new topological synchronous rectifier, which changes slightly the transformer structure and the synchronous switch connection in the asymmetrical half-bridge converter with a conventional self-driven synchronous rectifier. Since the proposed converter utilizes the transformer leakage inductor as its resonant inductor, its structure is simplified. The proposed converter well operates under the universal DC input voltage ($250{\sim}380V$). The operational principle and a design example for a 100W prototype are discussed in detail, respectively. Experimental results are shown for the designed prototype converter under universal DC input voltage.

Synchronous PI control scheme for DVR against a voltage sag in the power system (전력 계통내에서 순간 전압 강하에 빠른 응답 특성을 가진 DVR의 제어)

  • Kim M.B.;Lee S.H.;Moon G.W.;Youn M.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.554-559
    • /
    • 2003
  • A new control strategy for dynamic voltage restorer (DVR) is proposed. It is based on synchronous PI control strategy which features fast response. Therefore, the proposed control strategy takes faster action against a voltage sag. Experimental results, executed by DSP, are shown to validate the proposed control strategy.

  • PDF

On-Line Optimal Efficiency Control for Permanent Magnet Synchronous Motors Driving electric Vehicles (전기자동차 구동용 영구자석형 동기전동기의 온라인 최적 효율제어)

  • Chun, Tae-Won
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.586-593
    • /
    • 1994
  • This paper suggests the algorithm for on-line efficiency control of permancent magnet synchronous motors driving the electric vehicles. The existance of unigue d-axis current is verified, which generates the maximum efficiency at operating points of motor. Using the Fibonacci search method, d-axis current converges to the minimization of inverter input power, and to prevent the variation of motor speed in process of the efficiency control, the voltage decoupled control strategy is introduced. Through the experiments, the effects of an efficiency control algorithm are verified.