• Title/Summary/Keyword: Synchronous

Search Result 4,102, Processing Time 0.045 seconds

Action of Synchronous error between Z axis and spindle axis on rigid tapping (Rigid 탭핑에서의 Z축과 주축간 동기오차의 거동)

  • 이돈진;강지웅;김용규;김선호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.184-187
    • /
    • 2000
  • This paper describes action of synchronous error between z axis and spindle axis on rigid tapping. Because rigid tapping cuts the threads synchronizing the movement of z axis to spindle rotation, synchronous error between z axis and spindle is very important. Increase of synchronous error degrades the accuracy of thread and crushes the tap in worst case. So we developed the realtime measurement system of synchronous error in order to know the action of synchronous error on rigid tapping. In result, we have known that synchronous error was increased according to rise of spindle speed and z axis speed. And because the cutting torque(M3-30Ncm∼M10-300Ncm) on rigid tapping are less than maximum motor torque(3500Ncm), it specially doesn't affect the synchronous error. The most important parameter which has affected the increase of synchronous error was acceleration/deceleration time. On worst case, spindle motor was tripped because of the excess of synchronous error. Because the acceleration/deceleration time ocuupies the most of the total cutting time, in order to move on the high speed rigid tapping, the acceleration/deceleration time of spindle must be remarkably reduced.

  • PDF

Synchronous Position Control of Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치의 위치 동기 제어)

  • Jang, Ji-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1415-1421
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed control algorithm is proved by experimental results.

Position Synchronous Control of Two Axes Pneumatic Cylinder Driving Apparatus (2축 공기압 실린더 구동장치의 위치 동기 제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF

Synchronous Position Control of Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치의 위치 동기 제어)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.762-767
    • /
    • 2004
  • In this study, a position synchronous control algorithm being applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics of the driving apparatus. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF

A Study on the Synchronous Control of Two Motor Cylinders with Skew Disturbance (비대칭외란을 고려한 2축 전동실린더의 동기제어에 관한 연구)

  • Byun, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.129-136
    • /
    • 2009
  • A motor cylinder is widely used as an apparatus for transportation of a small scale load. It is, however, difficult for only one motor cylinder to transfer a large scale load such as a weir. The large scale load is transferred by two motor cylinders which are mounted on right and left of load itself. In this case, the displacement difference generated between two motor cylinders, namely, the synchronous error has a bad influence on the transportation. In this study, a synchronous control system is designed to restrain synchronous error caused by skew disturbance. The control system is composed of two disturbance observers and one synchronous controller. Each disturbance observer is designed to restrain the skew disturbance. And the synchronous controller is designed to achieve stable and accurate synchronization. Finally, the simulation results show that the designed control system is effective for the skew disturbance which lead to synchronous error.

  • PDF

A Study on Construction of Synchronous Control System for Extension and Stability (확장성과 안정성을 고려한 동기제어계의 구축에 관한 연구)

  • Byun, Jung-Hoan;Kim, Young-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1135-1142
    • /
    • 2002
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a multi-axes driving system has been developed. The synchronous error is caused by model uncertainties and disturbance at each axis. To overcome these problems, the synchronous control system of each axis has been composed of reference model, speed and synchronous controllers. The speed control system has been designed to follow speed reference. And the synchronous controller has been designed to keep minimizing the position synchronous error by reference model and H$\sub$ / approach. By the proposed method, position synchronous control system can be easily extended to two or more axes driving system. The effectiveness of the proposed method has been demonstrated by experiment.

Synchronous Control of a Two-Axes Driving System by Disturbance Observer and PID Controller (외란 관측기와 PID제어기를 이용한 2축 주행시스템의 동기제어)

  • 변정환;김영복;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers, disturbance observers, and one synchronous controller. The speed controllers, based on the PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order for the speed response fo the second axis to correspond with the one of the first axis. The disturbance observer has been designed to restrain the torque disturbance. The synchronous controller eliminates the synchronous error by controlling the speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Excessive Condition Interpretation of a Exciter Circuit to Prevent Starting Failure of Large Synchronous Motor (대형 동기 전동기 기동실패방지를 위한 여자기회로 과도현상 해석)

  • Park, Jin-Hun;Cho, Ne-Su;Kwon, Woo-Hyen;Im, Soung-Hun;Yoon, Kyoung-Seop;Kim, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.739-740
    • /
    • 2006
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, the large synchronous motor is not a self-starting motor. The rotor is heavy and, from a dead stop, it is impossible to bring the rotor into magnetic lock with the rotating magnetic field for this reason, all synchronous motor have some kinds of starting device. A simple starter is another motor which brings the rotor up to approximately 96 percent of it synchronous speed. The starting motor is disconnected and the rotor locks in step with the rotating field. The more commony used starting method is to have the rotor to include a squirrel cage indution winding. This indution winding brings the rotor almost to synchronous speed as an induction motor. So, this paper describes excessive condition interpretation of a exciter circuit to prevent starting failure of large synchronous motor. the large synchronous motor needs safety of it in accordance with operating frequent start and stop. the operating Problem point of synchronous motor appears potential element damage of Exciter circuit because synchronous motor is caused synchronous separation. hence we eliminate it and improve starting toque.

  • PDF

Frequency Characteristics of the Synchronous-Frame Based D-Q Methods for Active Power Filters

  • Wang, Xiaoyu;Liu, Jinjun;Hu, Jinku;Meng, Yuji;Yuan, Chang
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • The d-q harmonic detecting algorithms are dominant methods to generate current references for active power filters (APF). They are often implemented in the synchronous frame and time domain. This paper researches the frequency characteristics of d-q synchronous transformations, which are closely related to the analysis and design issues of control system. Intuitively, the synchronous transformation is explained with amplitude modulation (AM) in this paper. Then, the synchronous filter is proven to be a time-invariant and linear system, and its transfer function matrix is derived in the stationary frames. These frequency-domain models imply that the synchronous transformation has an equivalent effect of frequency transformation. It is because of this feature, the d-q method achieves band-pass characteristics with the low pass filters in the synchronous frame at run time. To simplify these analytical models, an instantaneous positive-negative sequence frame is proposed as expansion of traditional symmetrical components theory. Furthermore, the synchronous filter is compared with the traditional bind-pass filters based on these frequency-domain analytical models. The d-q harmonic detection methods are also improved to eliminate the inherent coupling effect of synchronous transformation. Typical examples are given to verify previous analysis and comparison. Simulation and experimental results are also provided for verification.

Precise Position Synchronous Control of Four-Axes System Based on Acceleration Control (가속도제어에 의한 4축 시스템의 정밀 위치동기제어)

  • Jeong, Seok-Kwon;Choi, Bong-Seok;You, Sam-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1245-1254
    • /
    • 2004
  • In this paper, we deal with a precise position synchronous control of four-axes system which is working under various load disturbances. Each axis driving system is consisted of a speed controller and an acceleration controller as an inner loop instead of conventional current control scheme. The acceleration control plays an important roll to suppress load disturbances quickly. Also, each axis is coupled by a maximum position synchronous error comparison to minimize position synchronous errors according to integration of speed differency. As a result, the proposed system enables precise synchronous control with good robustness against load disturbances during transient as well as steady state. The stability and robustness of the proposed system are investigated through its frequency characteristic and numerical simulations. Finally, experimental results under load disturbances demonstrate the effectiveness of the proposed control system fur four-axes position synchronous control.