• Title/Summary/Keyword: Synapses

Search Result 134, Processing Time 0.017 seconds

Proteomic analysis for the effects of non-saponin fraction with rich polysaccharide from Korean Red Ginseng on Alzheimer's disease in a mouse model

  • Sujin Kim;Yunkwon Nam;Min-jeong Kim;Seung-hyun Kwon;Junhyeok Jeon;Soo Jung Shin;Soyoon Park;Sungjae Chang;Hyun Uk Kim;Yong Yook Lee;Hak Su Kim;Minho Moon
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.302-310
    • /
    • 2023
  • Background: The most common type of dementia, Alzheimer's disease (AD), is marked by the formation of extracellular amyloid beta (Aβ) plaques. The impairments of axons and synapses appear in the process of Aβ plaques formation, and this damage could cause neurodegeneration. We previously reported that non-saponin fraction with rich polysaccharide (NFP) from Korean Red Ginseng (KRG) showed neuroprotective effects in AD. However, precise molecular mechanism of the therapeutic effects of NFP from KRG in AD still remains elusive. Methods: To investigate the therapeutic mechanisms of NFP from KRG on AD, we conducted proteomic analysis for frontal cortex from vehicle-treated wild-type, vehicle-treated 5XFAD mice, and NFP-treated 5XFAD mice by using nano-LC-ESI-MS/MS. Metabolic network analysis was additionally performed as the effects of NFP appeared to be associated with metabolism according to the proteome analysis. Results: Starting from 5,470 proteins, 2,636 proteins were selected for hierarchical clustering analysis, and finally 111 proteins were further selected for protein-protein interaction network analysis. A series of these analyses revealed that proteins associated with synapse and mitochondria might be linked to the therapeutic mechanism of NFP. Subsequent metabolic network analysis via genome-scale metabolic models that represent the three mouse groups showed that there were significant changes in metabolic fluxes of mitochondrial carnitine shuttle pathway and mitochondrial beta-oxidation of polyunsaturated fatty acids. Conclusion: Our results suggested that the therapeutic effects of NFP on AD were associated with synaptic- and mitochondrial-related pathways, and they provided targets for further rigorous studies on precise understanding of the molecular mechanism of NFP.

PDZ Domain-containing Proteins at Autotypic Junctions in Myelinating Schwann Cells (수초화 슈반세포 autotypic 세포연접의 PDZ 도메인 보유 단백질)

  • Han, Seongjohn;Park, Hyeongbin;Hong, Soomin;Lee, Donghyun;Choi, Maro;Cho, Jeongmok;Urm, Sang-Hwa;Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • A type of cell junction that is formed between different parts within the same cell is called autotypic cell junction. Autotypic junction proteins form tight junctions found between membrane lamellae of a cell, especially in myelinating glial cells. Some of them have postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains, which interact with the carboxyl (C)-terminal PDZ-binding motif of other proteins. PDZ domains are protein-protein interaction modules that play a role in protein complex assembly. The PDZ domain, which is widespread in bacteria, plants, yeast, metazoans, and Drosophila, allows the assembly of large multi-protein complexes. The multi-protein complexes act in intracellular signal transduction, protein targeting, and membrane polarization. The identified PDZ domain-containing proteins located at autotypic junctions include zonula occludens-1 (ZO-1), ZO-2, pals-1-associated tight junction protein (PATJ), multi-PDZ domain proteins (MUPPs), membrane-associated guanylate kinase inverted 2 (MAGI2), and protease-activated receptor (PAR)-3. PAR-3 interacts with atypical protein kinase C and PAR-6, forming a ternary complex, which plays an important role in the regulation of cell polarity. MAGI2 interacts with ${\alpha}$-amino-3-hydroxyl-5-methyl-4-isoxazole propionate (AMPA) receptor at excitatory synapses. PATJ is detected in paranodal loops associated with claudin-1. On the other hand, MUPP1 is found in mesaxons and Schmidt-Lanterman incisures with claudin-5. ZO-1, ZO-2, and PAR-3 are found at all three sites. Different distributions of PDZ domain-containing proteins affect the development of autotypic junctions. In this review, we will describe PDZ domain-containing proteins at autotypic tight junctions in myelinating Schwann cells and their roles.

Distribution Pattern of Inhibitory and Excitatory Nerve Terminals in the Rat Genioglossus Motoneurons (흰쥐의 턱끝혀근 지배 운동신경원에 대한 억제성 및 흥분성 신경종말의 분포 양식)

  • Moon, Yong-Suk
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.102-109
    • /
    • 2011
  • The genioglossus muscle plays an important role in maintaining upper airway patency during inspiration; if this muscle does not contract normally, breathing disorders occur due to closing of the upper airway. These occur because of disorders of synaptic input to the genioglossus motoneurons, however, little is known about it. In this study, the distribution of GABA-, glycine-, and glutamate-like immunoreactivity in axon terminals on dendrites of the rat genioglossus motoneurons, stained intracellularly with horseradish peroxidase (HRP), was examined by using postembedding immunogold histochemistry in serial ultrathin sections. The motoneurons were divided into four compartments: the soma, and primary (Pd), intermediate (Id), and distal dendrites (Dd). Quantitative analysis of 157, 188, 181, and 96 boutons synapsing on 3 soma, 14 Pd, 35 Id, and 28 Dd, respectively, was performed. 71.9% of the total number of studied boutons had immunoreactivity for at least one of the three amino acids. 32.8% of the total number of studied boutons were immunopositive for GABA and/or glycine and 39.1% for glutamate. Among the former, 14.2% showed glycine immunoreactivity only and 13.3% were immunoreactive to both glycine and GABA. The remainder (5.3%) showed immunoreactivity for GABA only. Most boutons immunoreactive to inhibitory amino acids contained a mixture of flattened, oval, and round synaptic vesicles. Most boutons immunoreactive to excitatory amino acids contained clear and spherical synaptic vesicles with a few dense-cored vesicles. When comparisons of the inhibitory and excitatory boutons were made between the soma and three dendritic segments, the proportion of the inhibitory to the excitatory boutons was high in the Dd (23.9% vs. 43.8%) but somewhat low in the soma (35.7% vs. 38.2%), Pd (34.6% vs. 37.8%) and Id (33.1% vs. 38.7%). The percentage of synaptic covering of the inhibitory synaptic boutons decreased in the order of soma, Pd, Id, and Dd, but this trend was not applicable to the excitatory boutons. The present study provides possible evidence that the spatial distribution patterns of inhibitory and excitatory synapses are different in the soma and dendritic tree of the rat genioglussus motoneurons.

Immunohistochemical Localization of NMDA Receptor in the Auditory Brain Stem of Postnatal 7, 16 Circling Mouse (생후 7일, 16일된 circling mouse 청각 뇌줄기에서 N-메틸-D 아스파르트산염 수용체(NMDA receptor)에 대한 면역염색학적 분포)

  • Choi, In-Young;Park, Ki-Sup;Kim, Hye-Jin;Maskey, Dhiraj;Kim, Myeung-Ju
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.53-64
    • /
    • 2010
  • Glutamate receptors may play a critical role in the refinement of developing synapses. The lateral superior olivary nucleus (LSO)-medial nucleus of trapezoid body (MNTB) synaptic transmission in the mammalian auditory brain stem mediate many excitatory transmitters such as glutamate, which is a useful model to study excitatory synaptic development. Hearing deficits are often accompanied by changes in the synaptic organization such as excitatory or inhibitory circuits as well as anatomical changes. Owing to this, circling mouse whose cochlea degenerates spontaneously after birth, is an excellent animal model to study deafness pathophysiology. However, little is known about the development regulation of the subunits composing these receptors in circling mouse. Thus, we used immunohistochemical method to compare the N-Methyl-D-aspartate receptor (NMDA receptor) NR1, NR2A, NR2B distribution in the LSO which project glutamergic excitatory input into the auditory brainstem, in circling mouse of postnatal (p) 7 and 16, which have spontaneous mutation in the inner ear, with wild-type mouse. The relative NMDAR1 immunoreactive density of the LSO in circling mouse p7 was $128.67\pm8.87$ in wild-type, $111.06\pm8.04$ in heterozygote, and $108.09\pm5.94$ in homozygote. The density of p16 circling mouse was $43.83\pm10.49$ in wild-type, $40\pm13.88$ in heterozygote, and $55.96\pm17.35$ in homozygote. The relative NMDAR2A immunoreactive density of LSO in circling mouse p7 was $97.97\pm9.71$ in wild-type, $102.87\pm9.30$ in heterozygote, and $106.85\pm5.79$ in homozygote. The density of LSO in p16 circling was $47.4\pm20.6$ in wild-type, $43.9\pm17.5$ in heterozygote, and $49.2\pm20.1$ in homozygote. The relative NMDAR2B immunoreactive density of LSO in circling mouse p7 was $109.04\pm6.77$ in wild-type, $106.43\pm10.24$ in heterozygote, and $105.98\pm4.10$ in homozygote. the density of LSO in p16 circling mouse was $101.47\pm11.5$ in wild-type, $91.47\pm14.81$ in heterozygote, and $93.93\pm15.71$ in homozygote. These results reveal alteration of NMDAR immunoreactivity in LSO of p7 and p16 circling mouse. The results of the present study are likely to be relevant to understand the central change underlying human hereditary deafness.