• Title/Summary/Keyword: Symmetric top

Search Result 73, Processing Time 0.032 seconds

Molecular Reorientation of Oblate Symmetric Top Molecules with Internal Extended Rotational Diffusion

  • Shin, Kook-Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.5
    • /
    • pp.228-230
    • /
    • 1983
  • Molecular reorientation of oblate symmetric top molecules with internal rotation is investigated theoretically and an analytic expression for the overall reorientational correlation time in terms of the internal angular momentum correlation time is derived. This expression is quite different from the expression for prolate symmetric top molecules but reduces to the same expression in the spherical top limit. Fast internal rotation is treated by a modified version of the extended rotational diffusion while the bulky symmetric top mainbody is treated by the rotational diffusion model.

Spin-Rotational Relaxation Study of Molecular Reorientation of Oblate Symmetric Top Molecules with Internal Extended Rotational Diffusion

  • Kim, Eun-Mi;Shin, Kook-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.430-433
    • /
    • 1989
  • Molecular reorientation of oblate symmetric top molecules in the presence of internal rotation is investigated and an analytic expression for the spin-rotational relaxation rate of a nucleus attached to the internal rotor is obtained as a function of the internal angular momentum correlation time. The overall reorientation of the symmetric top is treated by the anisotropic rotational diffusion and the internal rotation is assumed to undergo modified extended rotational diffusion. The result is compared with the previous work for the prolate symmetric top molecule and it is shown that both results reduce to the same expression in the spherical top limit.

Observation of Supersymmetry in Rigid Symmetric Top Rotor

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.515-518
    • /
    • 2006
  • It is explicitly shown that a supersymmetry structure exists in the spectrum of a rigid symmetric top rotor in the molecule-fixed frame. Using projection operators constructed from the time-reversal symmetry of the rotor, the full rotor Hamiltonian is separated into two parts, i.e., the bosonic and fermionic components. The construction, without ambiguity, suggests that the rotor has a supersymmetry in it. This supersymmetry is mathematically equivalent to that of the free rotor on a plane recently noted by Rau.

A Study on performance analysis of screw rotor profiles (스크류 로터 치형의 성능해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Dong-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 1996
  • To design high-effective profile in screw rotor profile using in screw compressor, we design the symmetric type changing the number of lobes and the non-symmetric type changing the neighbourhood of the top point of lobe. Then, we calculated the performance value of profile according to the scale of these non-symmetric's wrap angle. We had the results as follows. 1. About the non-symmetric case, the larger a wrap angle is the shorter seal line is and the smaller blow hole is, thus we know what the large wrap angle profile is better than the small one. 2. We know what the non-symmetric profile is better than the symmetric profile in the result of the compare of seal line's length, blow hole's area, volume curve. 3. About the non-symmetric case, the deformation of the neighbourhood of lobe's top point of the rotor profile has a large effect upon the increase of performance because the length of seal line became short and the area of blow hole is small.

  • PDF

Analysis of Threshold Voltage for Symmetric and Asymmetric Oxide Structure of Double Gate MOSFET (이중게이트 MOSFET의 대칭 및 비대칭 산화막 구조에 대한 문턱전압 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2939-2945
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage for oxide structure of symmetric and asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET can be fabricated with different top and bottom gate oxide thickness, while the symmetric DGMOSFET has the same top and bottom gate oxide thickness. Therefore optimum threshold voltage is considered for top and bottom gate oxide thickness of asymmetric DGMOSFET, compared with the threshold voltage of symmetric DGMOSFET. To obtain the threshold voltage, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. We investigate for bottom gate voltage, channel length and thickness, and doping concentration how top and bottom gate oxide thickness influences on threshold voltage using this threshold voltage model. As a result, threshold voltage is greatly changed for oxide thickness, and we know the changing trend greatly differs with bottom gate voltage, channel length and thickness, and doping concentration.

Nuclear Magnetic Relaxation of Molecular Reorientation in Liquid

  • Kook Joe Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.110-112
    • /
    • 1993
  • Molecular reorientation of oblate symmetric top molecules in the presence of internal rotation is investigated and an analytic expression for the overall reorientational correlation time is obtained. The overall reorientation of the symmetric top is treated by the anisotropic rotational diffusion and the internal rotation is analyzed by employing a model which describes jumps between several discrete states with different lifetimes. The lifetimes thus obtained can be compared with the internal angular momentum correlation time which appears when the internal rotation is treated by a modified extended rotational diffusion model.

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

Analysis of Threshold Voltage for Double Gate MOSFET of Symmetric and Asymmetric Oxide Structure (대칭 및 비대칭 산화막 구조의 이중게이트 MOSFET에 대한 문턱전압 분석)

  • Jung, Hakkee;Kwon, Ohshin;Jeong, Dongsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.755-758
    • /
    • 2014
  • This paper has analyzed the change of threshold voltage for oxide structure of symmetric and asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET can be fabricated with different top and bottom gate oxide thickness, while the symmetric DGMOSFET has the same top and bottom gate oxide thickness. Therefore optimum threshold voltage is considered for top and bottom gate oxide thickness of asymmetric DGMOSFET, compared with the threshold voltage of symmetric DGMOSFET. To obtain the threshold voltage, the analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. We investigate for bottom gate voltage, channel length and thickness, and doping concentration how top and bottom gate oxide thickness influences on threshold voltage using this threshold voltage model. As a result, threshold voltage is greatly changed for oxide thickness, and we know the changing trend very differs with bottom gate voltage, channel length and thickness, and doping concentration.

  • PDF

Analysis of Subthreshold Swing Mechanism by Device Parameter of Asymmetric Double Gate MOSFET (소자 파라미터에 따른 비대칭 DGMOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.156-162
    • /
    • 2015
  • This paper has analyzed how conduction path and electron concentration for the device parameters such as oxide thickness, channel doping, and top and bottom gate voltage influence on subthreshold swing of asymmetric double gate MOSFET. Compared with symmetric and asymmetric double gate MOSFET, asymmetric double gate MOSFET has the advantage that the factors to be able to control the short channel effects increase since top and bottom gate oxide thickness and voltages can be set differently. Therefore the conduction path and electron concentration for top and bottom gate oxide thickness and voltages are investigated, and it is found the optimum conditions that the degradation of subthreshold swing, severe short channel effects, can reduce. To obtain the analytical subthreshold swing, the analytical potential distribution is derived from Possion's equation. As a result, conduction path and electron concentration are greatly changed for device parameters, and subthreshold swing is influenced by conduction path and electron concentration of top and bottom.

Lateral buckling of beams with top bracing

  • Park, Jong-Sup;Kang, Young-Jong
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.613-625
    • /
    • 2003
  • This paper presents the lateral-torsional buckling (LTB) of beams or girders with continuous lateral support at top flange. Traditional moment gradient factors ($C_b$) given by AISC in LRFD Specification for Structural Steel Buildings and by AASHTO in LRFD Bridge Design Specifications were reviewed. Finite-element method buckling analyses of doubly symmetric I-shaped beams with continuous top bracing were conducted to develop new moment gradient factors. A uniformly distributed load was applied at midheight and either or both end moments were applied at the ends of beams. The proposed solutions are simple and accurate for use by engineers to determine the LTB resistance of beams.