• 제목/요약/키워드: Symmetric ring

검색결과 115건 처리시간 0.021초

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • 대한수학회논문집
    • /
    • 제36권2호
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.

SPECIAL WEAK PROPERTIES OF GENERALIZED POWER SERIES RINGS

  • Ouyang, Lunqun
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.687-701
    • /
    • 2012
  • Let $R$ be a ring and $nil(R)$ the set of all nilpotent elements of $R$. For a subset $X$ of a ring $R$, we define $N_R(X)=\{a{\in}R{\mid}xa{\in}nil(R)$ for all $x{\in}X$}, which is called a weak annihilator of $X$ in $R$. $A$ ring $R$ is called weak zip provided that for any subset $X$ of $R$, if $N_R(Y){\subseteq}nil(R)$, then there exists a finite subset $Y{\subseteq}X$ such that $N_R(Y){\subseteq}nil(R)$, and a ring $R$ is called weak symmetric if $abc{\in}nil(R){\Rightarrow}acb{\in}nil(R)$ for all a, b, $c{\in}R$. It is shown that a generalized power series ring $[[R^{S,{\leq}}]]$ is weak zip (resp. weak symmetric) if and only if $R$ is weak zip (resp. weak symmetric) under some additional conditions. Also we describe all weak associated primes of the generalized power series ring $[[R^{S,{\leq}}]]$ in terms of all weak associated primes of $R$ in a very straightforward way.

SYMMETRIC AND PSEUDO-SYMMETRIC NUMERICAL SEMIGROUPS VIA YOUNG DIAGRAMS AND THEIR SEMIGROUP RINGS

  • Suer, Meral;Yesil, Mehmet
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1367-1383
    • /
    • 2021
  • This paper studies Young diagrams of symmetric and pseudo-symmetric numerical semigroups and describes new operations on Young diagrams as well as numerical semigroups. These provide new decompositions of symmetric and pseudo-symmetric semigroups into a numerical semigroup and its dual. It is also given exactly for what kind of numerical semigroup S, the semigroup ring 𝕜⟦S⟧ has at least one Gorenstein subring and has at least one Kunz subring.

DUO RING PROPERTY RESTRICTED TO GROUPS OF UNITS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회지
    • /
    • 제52권3호
    • /
    • pp.489-501
    • /
    • 2015
  • We study the structure of right duo ring property when it is restricted within the group of units, and introduce the concept of right unit-duo. This newly introduced property is first observed to be not left-right symmetric, and we examine several conditions to ensure the symmetry. Right unit-duo rings are next proved to be Abelian, by help of which the class of noncommutative right unit-duo rings of minimal order is completely determined up to isomorphism. We also investigate some properties of right unit-duo rings which are concerned with annihilating conditions.

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.

ON SOME TYPE ELEMENTS OF ZERO-SYMMETRIC NEAR-RING OF POLYNOMIALS

  • Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.183-195
    • /
    • 2019
  • Let R be a commutative ring with unity. In this paper, we characterize the unit elements, the regular elements, the ${\pi}$-regular elements and the clean elements of zero-symmetric near-ring of polynomials $R_0[x]$, when $nil(R)^2=0$. Moreover, it is shown that the set of ${\pi}$-regular elements of $R_0[x]$ forms a semigroup. These results are somewhat surprising since, in contrast to the polynomial ring case, the near-ring of polynomials has substitution for its "multiplication" operation.

Dynamic Home Circuit Construction for Datacenter Networks Using LOBS-HC Ring

  • Tang, Wan;Yi, Bo;Yang, Ximi;Li, Jingcong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1606-1623
    • /
    • 2015
  • Optical switching will be applied in datacenter networks because electronic switching is costly and power-consuming. In this paper, considering the ring-based interconnection using optical switching in the core of a datacenter, we study the home circuit (HC) construction for the labeled optical burst switching with home circuit (LOBS-HC), a new paradigm trying to share wavelengths among the HCs from the same source. In particular, aiming to construct HCs dynamically and properly, a scheme named optimal path matching and symmetric HC matching (OPM-SHM) is proposed. The main idea of OPM-SHM is to dynamically construct HCs by sharing wavelength(s) not only among the same-source HCs but also with symmetric HCs which have different sources other than the original LOBS-HC features. The simulation results demonstrate that OPM-SHM achieves better performance than some other methods in terms of burst loss rate and wavelength utilization of physical links. More specially, it maintains good load balancing for the datacenter network using an LOBS-HC ring. In addition, due to the symmetric feature of SHM, the proposed scheme can decrease the upper bound of the average hop count of the routing paths to half of the ring size.

SYMMETRIC BI-DERIVATIONS IN PRIME RINGS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.819-826
    • /
    • 1998
  • The purpose of this paper is to prove the following results; (1) Let R be a prime ring of char $(R)\neq 2$ and I a nonzero left ideal of R. The existence of a nonzero symmetric bi-derivation D : $R\timesR\;\longrightarrow\;$ such that d is sew-commuting on I where d is the trace of D forces R to be commutative (2) Let m and n be integers with $m\;\neq\;0.\;or\;n\neq\;0$. Let R be a noncommutative prime ring of char$ (R))\neq \; 2-1\; p_1 \;n_1$ where p is a prime number which is a divisor of m, and I a nonzero two-sided ideal of R. Let $D_1$ ; $R\;\times\;R\;\longrightarrow\;and\;$ $D_2\;:\;R\;\times\;R\;longrightarrow\;R$ be symmetric bi-derivations. Suppose further that there exists a symmetric bi-additive mapping B ; $R\;\times\;R\;\longrightarrow\;and\;$ such that $md_1(\chi)\chi + n\chi d_2(\chi)=f(\chi$) holds for all $\chi$$\in$I, where $d_1 \;and\; d_2$ are the traces of $D_1 \;and\; D_2$ respectively and f is the trace of B. Then we have $D_1=0 \;and\; D_2=0$.