• Title/Summary/Keyword: Symbolic Encoding

Search Result 11, Processing Time 0.021 seconds

Design of Genetic Algorithms-based Fuzzy Polynomial Neural Networks Using Symbolic Encoding (기호 코딩을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Choi, Jeoung-Nae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.270-272
    • /
    • 2006
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs) using symbolic coding for non-linear data. One of the major subject of genetic algorithms is representation of chromosomes. The proposed model optimized by the means genetic algorithms which used symbolic code to represent chromosomes. The proposed gFPNN used a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Study on the Performance Evaluation of Encoding and Decoding Schemes in Vector Symbolic Architectures (벡터 심볼릭 구조의 부호화 및 복호화 성능 평가에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.229-235
    • /
    • 2024
  • Recent years have seen active research on methods for efficiently processing and interpreting large volumes of data in the fields of artificial intelligence and machine learning. One of these data processing technologies, Vector Symbolic Architecture (VSA), offers an innovative approach to representing complex symbols and data using high-dimensional vectors. VSA has garnered particular attention in various applications such as natural language processing, image recognition, and robotics. This study quantitatively evaluates the characteristics and performance of VSA methodologies by applying five VSA methodologies to the MNIST dataset and measuring key performance indicators such as encoding speed, decoding speed, memory usage, and recovery accuracy across different vector lengths. BSC and VT demonstrated relatively fast performance in encoding and decoding speeds, while MAP and HRR were relatively slow. In terms of memory usage, BSC was the most efficient, whereas MAP used the most memory. The recovery accuracy was highest for MAP and lowest for BSC. The results of this study provide a basis for selecting appropriate VSA methodologies depending on the application area.

Implementation of the modified signed digit number (MSD) adder using joint spatial encoding method (Joint Spatial Encoding 방법을 이용한 변형부호화자리수 가산기 구현)

  • 서동환;김종윤
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.987-990
    • /
    • 1998
  • An optical adder for a modified signed-digit(MSD) number system using joint spatial encoding method is proposed. In order to minimize the numbers of symbolic substitution rules, nine input patterns were divided into five groups of the same addition results. For recognizing the input reference patterns, masks and reference patterns without any other spatial operations are used. This adder is implemented by smaller system in size than a conventional adder.

  • PDF

Design of Feed-Forward Fuzzy Set-based Neural Networks Using Symbolic Encoding and Information Granulation (기호코딩 및 정보입자를 이용한 전방향 퍼지 집합 기반 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2089-2090
    • /
    • 2006
  • 본 논문은 기호 코딩 및 정보입자를 이용한 유전자 알고리즘의 전방향 퍼지 집합 기반 뉴럴네트워크 (Information Granules and Symbolic Encoding-based Fuzzy Set Polynomial Neural Networks ; IG and SE based FSPNN)의 모델 설계를 제안한다. 기존 퍼지 집합기반 다항식 뉴럴네트워크(FSPNN)의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델은 각 입력에 대해 MFs의 개수 만큼 규칙을 생성하는 Fuzzy 집합기반 다항식 뉴럴네트워크(FSPNN)를 그대로 사용한다. 그리고 IG based gFSPNN의 평가을 위해 실험적 예제를 통하여 제안된 모델의 성능 및 근사화 능력의 우수함을 보인다.

  • PDF

Design of Fuzzy Polynomial neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software System (유전자 알고리즘의 기호 코딩을 이용한 퍼지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용)

  • Lee In-Tae;O Seong-Gwon;Choi Jeong-Nae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.113-116
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 기호코팅을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴 네트워크 (Genetic Algorithms-based Fuzzy Polynomial Neural Networks ; gFPNN)의 모델을 제안한다. 유전자 알고리즘에는 이진코딩, 기호코팅, 실수코딩이 있다. 제안된 모델은 스트링의 길이에 따른 해밍절벽을 기호코딩으로 극복하였다. gFPNN에 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 그리고 규칙의 후반부는 간략, 선형, 이차식 그리고 변형된 이차식 함수에 의해 설계된다. 실험적 예제를 통하여 제안된 모델의 성능이 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF

Implementation of the modified-signed digit(MSD) number adder using triple rail-coding input and symbolic substitution (Triple rail-coding 입력과 기호치환을 이용한 변형부호화자리수 가산기 구현)

  • Shin, Chang-Mok;Kim, Soo-Joong;Seo, Dong-Hoan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • An optical parallel modified signed-digit(MSD) number adder system is proposed by using triple rail-coding input patterns and serial arrangement method of symbolic substitution. By combing overlapped arithmetic results. which are produced by encoding MSD input as triple rail-coding patterns. into the same patterns, symbolic substitution rules are reduced and also by using serialized and space-shifted input patterns in optical experiments, the optical adder without space-shifting operation, NOR operation and threshold operation is implemented.

Design of Information Granules based Fuzzy Polynomial Neural Networks Using Symbolic Encoding of Genetic Algorithms and Its Application to Software Systems (유전자 알고리즘의 기호 코딩을 이용한 정보 입자기반 터지 다항식 뉴럴네트워크의 설계와 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2091-2092
    • /
    • 2006
  • 본 논문은 소프트웨어 공정에 대하여 유전자 알고리즘의 기호코딩을 이용한 정보입자 기반 퍼지 다항식 뉴럴 네트워크 (Information Granules based genetic Fuzzy Polynomial Neural Networks ;IG based gFPNN)의 모델 설계를 제안한다. 기존 퍼지 다항식 뉴럴네트워크의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍 절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델의 전반부 구조와 후반부 구조는 기존 모델에 구성을 그대로 사용한다. 실험적 예제를 통하여 제안된 모델의 근사화 능력과 일반화 능력이 우수함을 보인다.

  • PDF

Trend Pattern Extraction from Microarray Data with Symbolic Encoding (기호코딩을 통한 마이크로어레이 데이터의 추이 패턴 추출)

  • Lee, Sun-A;Lee, Keon-Myung;Kim, Wun-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • 대규모로 유전자 발현정도를 동시에 측정하는 마이크로어레이 실험은 많은 양의 데이터를 생성하기 때문에, 자동화된 효과적인 분석기법이 필요하다. 이 논문에서는 약물의 영향 분석을 위해 약물의 투여량 및 투여후의 시간대별로 샘플을 추출하여, 마이크로어레이를 이용하여 유전자의 발현량을 분석하는 경우에, 약물에 대해서 반응하는 유전자를 추출하는 데이터마이닝 기법을 제안한다. 제안한 방법에서는 유전자의 발현 정도값을 이전 비교대상의 값을 기준값으로 하여 증가, 감소, 답보에 해당하는 기호로 매핑하여, 분석자가 원하는 패턴을 보이는 유전자를 추천한다. 한편, 유전자의 상호간에 많은 영향을 주고받기 때문에 특정 약물을 투여할 때, 이에 직접적인 영향을 받는 것도 있지만, 이와는 전혀 상관없이 동작하는 것도 있기 때문에, 제안한 방법에서는 이러한 약물 투여와 유의성이 있을 가능성이 있는 유전자만을 전처리과정을 통해서 필터링하는 기법을 활용한다.

Implementation of the two-step modified signed digit number adders using joint spatial encoding method (결합 공간 부호화 방법을 이용한 두 단계 변형부호화자리수 가산기 구현)

  • Seo, Dong-Hwan;Kim, Jong-Yun;Park, Se-Jun;Jo, Ung-Ho;No, Deok-Su;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.810-820
    • /
    • 2001
  • Conventional binary adder requires a carry propagation to the most significant bit, and leads to serial addition. However, optical adder using a modified signed digit(MSD) number system has been Proposed to reduce the carry propagation chain encountered in binary adder. In this paper, in order to minimize the number of symbolic substitution(SS) rules, nine input patterns were divided into five groups of the same addition results. For recognizing the input reference patterns, serial connections of joint spatial encoded patterns and masks without any other spatial operations are used.

  • PDF

Candidate Significant Gene Recommendation with Symbolic Encoding of Microarray Data (마이크로어레이 데이터의 기호코딩을 통한 유의한 후보 유전자 검출)

  • Lee, Geon-Myeong;Lee, Hye-Ri;Kim, Won-Jae;Yun, Seok-Jung;Kim, Yong-Jun;Jeong, Pil-Du;Kim, Eun-Jeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.417-420
    • /
    • 2007
  • 마이크로어레이는 생명과학 분야에서 사용되는 대규모의 유전자 발현정도를 동시에 측정할 수 있는 도구이다. 마이크로어레이 실험은 많은 양의 데이터를 생성하기 때문에, 자동화된 효과적인 분석기법이 필요하다. 이 논문에서는 약물의 영향 분석을 위해 약물의 투여량 및 투여후의 시간대별로 샘플을 추출하여, 마이크로어레이를 이용하여 유전자의 발현량을 분석하는 경우에, 약물에 대해서 반응하는 유전자를 추출하는 데이터 마이닝 기법을 제안한다. 제안한 방법에서는 유전자의 발현정도값을 이전 시간의 값을 기준값으로 하여 증가, 감소, 답보에 해당하는 기호로 매핑하여, 분석자가 원하는 패턴을 보이는 유전자를 추천한다. 한편, 유전자의 상호간에 많은 영향을 주고 받기 때문에 특정 약물을 투여할 때, 이에 직접적인 영향을 받는 것도 있지만, 이와는 전혀 상관없이 동작하는 것도 있기 때문에, 제안한 방법에서는 이러한 약물 투여와 유의성이 있을 가능성이 있는 유전자만을 전처리과정을 통해서 필터링하는 기법을 활용한다. 제안한 방법은 실제 약물 투여 실험 샘플에 대한 마이크로어레이 데이터에 적용하여 활용가능성을 확인하였다.

  • PDF