• Title/Summary/Keyword: Switching ripple current

Search Result 282, Processing Time 0.025 seconds

An Analysis of Optimal Link Voltage of VS-SVPWM for Current Harmonics Reduction

  • Lee Dong-Hee;Park Han-Woong;Ahn Jin-Woo;Kwon Young-Ahn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.343-346
    • /
    • 2002
  • In recent, complex SVPWM (Space Vector PWM) algorithm can be easily implemented by high performance microprocessor and DSP. Various SVPWM techniques are widely studied due to the advantages of low harmonic distortion and high use ratio of D.C. link voltage. Most of various studies for improving of VS-PWM inverter performance are concentrated about switching pattern and zero pulse pattern split algorithms. However, dc link voltage that is determined at rated load and speed conditions is not proper in the low speed and under rated load. In this paper, analysis of current ripple with digitally implemented SVPWM inverter is introduced according to link voltage. The optimal link voltage in the designed inverter system and load condition is provided in order to suppress output voltage error and current ripple. As remaining the effective voltage vector interval per sampling period sufficiently, additional voltage error and current ripple are suppressed. The proposed algorithm is verified through digital simulation and experimental results.

  • PDF

Analysis and Design of a Current-fed Two Inductor Bi-directional DC/DC Converter using Resonance for a Wide Voltage Range

  • Noh, Yong-Su;Kim, Bum-Jun;Choi, Sung-Chon;Kim, Do-Yun;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1634-1644
    • /
    • 2016
  • In this paper, a current-fed two-inductor bi-directional DC/DC converter using resonance (CF-TIBCR) and its design method are proposed. The CF-TIBCR has characteristics of low current ripple and a high current rating because of two separated inductors. Also, it achieves zero voltage switching for all switches and zero current switching for switches of a low voltage stage by using the resonant tank. Besides, a voltage spike problem in conventional current-fed converters is solved without the need for an additional snubber or clamping circuits. As a result, the CF-TIBCR features high step-up and high efficiency. Since the proposed converter has difficulty achieving the soft-switching condition when the converter requires the low voltage transfer ratio, a method that varies the number of resonant cycles is adopted to extend the output voltage range with satisfying the soft-switching condition. The principles of the operation characteristics are presented with a theoretical analysis, and the proposed converter is verified through results of an experiment using a laboratory prototype.

The Development of High-Current Power Supply System for Electrolytic Copper Foil

  • Luo, An;Ma, Fujun;Xiong, Qiaopo;He, Zhixing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.399-410
    • /
    • 2015
  • A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.

Current Control Scheme of High Speed SRM Using Low Resolution Encoder

  • Khoi, Huynh Khac Minh;Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • This paper presents a balanced soft-chopping circuit and a modified PI controller for a high speed 4/2 Switched Reluctance Motor (SRM) with a 16 pulse per revolution encoder. The proposed balanced soft-chopping circuit can supply double the switching frequency in the fixed switching frequency of power devices to reduce current ripple. The modified PI controller uses maximum voltage, back-emf voltage and PI control modes to overcome the over-shoot current due to the time delay effect of current sensing. The maximum voltage mode can supply a fast excitation current with consideration of the hardware time delay. Then the back-emf voltage mode can suppress the current over-shoot with consideration of the feedback signal delay. Finally, the PI control mode can adjust the phase current to a desired value with a fast switching frequency due to the proposed balanced soft-chopping technology.

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

Torque Ripple Reduction Scheme of Single-Phase SRM with High Power Factor (고역률형 단상 SRM의 토크리플 저감방식)

  • Lee, Zhen-Guo;Liang, Jianing;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.122-125
    • /
    • 2005
  • A novel torque ripple reduction scheme of single-phase SRM with high power factor is presented. The proposed SRM drive has one additional active switches in the conventional asymmetric inverter. In order to get a higher power factor, the source current is controlled sinusoidal, And additional excitation current is added from charge capacitor due to torque ripple reduction. The switching period of source and charged voltage is controlled properly to get unity power factor and torque ripple reduction. The characteristics and validity of the proposed scheme is discussed with some simulation results.

  • PDF

High Efficiency Control of SRM with Maximum Energy Conversion Method (최대 에너지 변환기법에 의한 SRM 고효율 운전)

  • Kang Y. J.;Lee D. H.;Oh S. G.;Park S. J.;Ahn J. W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.37-40
    • /
    • 2001
  • This paper is suggested an optimal switching angle of a switched reluctance motor drive system for maximum energy ratio. A new magnetizing method with a low-frequency increasing the energy conversion ratio that is related to the efficiency of motor is proposed As results, it improves the efficiency about 2[$\%$]. And a torque ripple is also reduced compared with that of the conventional switching angle magnetizing approach. In order to start softly regardless of a large ripple torque, the profile of phase current is predicted and current control mode was adapted when it is operated under the starting speed.

  • PDF

SRM Drive System with Maximum Energy Ratio (최대 에너지비를 갖는 SRM 구동)

  • Hwang Hyung-Jin;Lee Dong-Hee;Park Sung-Jun;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.224-227
    • /
    • 2004
  • The goal of this paper is optimal switching angle of switched reluctance motor drive system for maximum energy ratio. A new magnetizing method with a low-frequency increasing the energy conversion ratio that is related to the efficiency of motor is proposed. As results, it improved the efficiency about $2[\%]$. And a torque ripple is also sufficiently reduced compared with that of the conventional switching angle magnetizing approach. In order to start softly regardless of a large ripple torque, the profile of phase current is predicted by the ANFIS, and current control mode was adapted when it is operated under the starting speed. Variable implementations on the fields will guarantee the more practical drive system.

  • PDF

Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters

  • Lee, Jong-Pil;Cha, Honnyong;Shin, Dongsul;Lee, Kyoung-Jun;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.339-348
    • /
    • 2013
  • Multiphase dc-dc converters are widely used in modern power electronics applications due to their advantages over single-phase converters. Such advantages include reduced current stress in both the switching devices and passive elements, reduced output current ripple, and so on. Although the output current ripple of a converter can be significantly reduced by virtue of the interleaving effect, the inductor current ripple cannot be reduced even with the interleaving PWM method. One way to solve this problem is to use a coupled inductor. However, care must be taken in designing the coupled inductor to maximize its performances. In this paper, a detailed analysis of a coupled inductor is conducted and the effect of a coupled inductor on current ripple reduction is investigated extensively. From this analysis, a UU core based coupled inductor structure is proposed to maximize the performance of the coupled inductor.

2-Phase Bidirectional Non-Inverting Buck-Boost Converter using Coupled Inductor (결합 인덕터를 이용한 2상 양방향 비반전 벅-부스트 컨버터)

  • Chae, Jun-Young;Jeong, Seung-Yong;Cha, Hon-Nyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.481-487
    • /
    • 2014
  • This study proposes a two-phase non-inverting buck-boost converter that uses a coupled inductor. The multi-phase converter has many advantages over single-phase counterparts, such as reduced output current ripple and conduction loss in switching devices and passive elements. Although the output current ripple of the multi-phase converter is reduced significantly because of the interleaved effect, the inductor current ripple is not reduced in multi-phase converters. One of the solutions to this problem is to use a coupled inductor. A 4 kW prototype converter is built and tested to verify the performance of the proposed converter.