• 제목/요약/키워드: Switching rectifier

검색결과 392건 처리시간 0.03초

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

Analysis and Specifications of Switching Frequency in Parallel Active Power Filters Regarding Compensation Characteristics

  • Guopeng, Zhao;Jinjun, Liu
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.749-761
    • /
    • 2010
  • The switching frequency of a power device is a very important parameter in the design of a parallel active power filter (PAPF), but so far, very little discussion has been conducted on it in a quantitative manner in previous publications. In this paper, an extensive analysis on the effects of the switching frequency on the performance of a PAPF is made, and a specification of the switching frequency values with different compensation results is presented. A first-order inertia element and a second-order oscillation element are considered as approximate models of a PAPF, respectively. The compensation characteristic for each order of harmonic current is obtained at different switching frequencies. Then, the THDs of each model for the system loads of a rectifier with resistance and inductance loads are proposed. The compensation results of a PAPF controlled as a first-order inertia element are better than those of a PAPF controlled as a second-order oscillation element. With two types of system loads which are rectifier with resistance and inductance loads and rectifier with resistance, inductance and capacitance loads, the THDs of the source current after compensation are presented with different switching frequencies. The compensation characteristics for the most widely used digital control system are investigated. The situation with an analog control is the theoretical characteristic and it is the best situation. The compensation characteristic of the digital control is worse than the compensation characteristic of the theoretical characteristic. Based on these analyses, the specifications of compensation characteristics with different switching frequencies are quite straightforward. Finally, a practical design example is studied to verify the application.

동기 정류기를 이용한 클램프 모드 포워드 영전압 스위칭 다중 공진형 컨버터 (CM Forward ZVS-MRC with Synchronous Rectifier)

  • 안강순;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.395-399
    • /
    • 1996
  • The Clamp Mode(CM) Forward Zero Voltage Switching Multi Resonant Converter(ZVS-MRC) with self-driven synchronous rectifier in studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET linear model and is compared with the loss at the conventional schottky diode rectification stage of the converter. From the results of the analysis, it is known that the use of MOSFETs as a synchronous rectifier reduces the loss at the rectification stage over the whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validity of the analysis, we have built a 33W(3.3V/10A) CM Forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. From the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

전기 자동차 배터리 충전장치용 3상 3스위치 전류형 정류기의 전류 왜곡 감소를 위한 펄스 폭 변조 스위칭 기법 (Reduced Current Distortion of Three-Phase Three-Switch Buck-Type Rectifier using Carrier Based PWM in EV Traction Battery Charging Systems)

  • 채범석;강태원;강다현;서용석
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.375-387
    • /
    • 2015
  • This study investigates an economic and highly efficient power-converter topology and its modulation scheme for 60 kW rapid EV charger system. The target system is a three-phase three-switch buck-type rectifier topology. A new carrier-based PWM scheme, which is characterized by simple implementation using logic gates, is introduced in this paper. This PWM scheme replaces the diode rectifier equivalent switching state with an active switching state to produce the same effective current flowing path. As a result, the distortion of input current during the polarity reversal of capacitor line voltage can be mitigated. The proposed modulation technique is confirmed through simulation verification. The proposed modulation technique and its implementation scheme can expand the operation range of the three-phase three-switch buck-type rectifier with high-quality AC input and capacitor ripple current.

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

  • Cao, Guoen;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.815-826
    • /
    • 2014
  • An improved bridgeless interleaved boost power factor correction (PFC) rectifier to improve power efficiency and component utilization is proposed in this study. With combined conventional bridgeless PFC circuit and interleaved technology, the proposed rectifier consists of two interleaved and magnetic inter-coupling boost bridgeless converter cells. Each cell operates alternatively in the critical conduction mode, which can achieve the soft-switching characteristics of the switches and increase power capacity. Auxiliary blocking diodes are employed to eliminate undesired circulating loops and reduce current-sensing noise, which are among the serious drawbacks of a dual-boost PFC rectifier. Magnetic component utilization is improved by symmetrically coupling two inductors on a unique core, which can achieve independence from each other based on the auxiliary diodes. Through the interleaved approach, each switch can operate in the whole line cycle. A simple control scheme is employed in the circuit by using a conventional interleaved controller. The operation principle and theoretical analysis of the converter are presented. A 600 W experimental prototype is built to verify the theoretical analysis and feasibility of the proposed rectifier. System efficiency reaches 97.3% with low total harmonic distortion at full load.

소프트 스위칭 방식의 삼상 다이오드 정류기 (Three-Phase Diode Rectifier Employing Soft Switching Methods)

  • 문건우;이정훈;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.847-849
    • /
    • 1993
  • Two new schemes of three-phase rectifier using softing switching methods are introduced for the input power factor correction. These three-phase rectifiers are employed the zero voltage switching for the parallel resonant and zero current switching for the series resonant AC link type rectifiers. The dynamic modeling and discontinuous integral cycle mode control technique are also presented. With the proposed circuits and control technique, the high power factor can be obtained.

  • PDF

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

새로운 고조파 저감형 고역율 단상정류 회로 (A New Harmonics Reducing Type High Factor Single-Phase Rectifier Circuit)

  • 김칠용;문상필;조만철;서기영;권순걸
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.468-472
    • /
    • 2007
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. The absence of switching devices makes systems more tolerant to over-load, and brings low radio noise benefits. We propose a power factor correction scheme using a LC resonant in commercial frequency without switching devices. In this method, It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced. The result are confirmed by the theoretical and expermental implementations

  • PDF

반파정류를 이용한 형광램프용 전자식 스타터의 개발 (Development of an electronic starter using a half-wave rectifier for fluorescent lamps)

  • 이동호;송상빈;여인선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2088-2090
    • /
    • 1998
  • A low-cost electronic starter is developed to decrease ignition failure significantly through successive starting trial and to prevent overheating at the end of fluorescent lamp life. Moreover, it has an additional feature of being capable of ignition at the recovered lamp voltage without any circuit correction. The developed electronic starter is consisted of four parts - a half wave rectifier circuit, a timer circuit, a switching circuit and a protection circuit. The protection circuit made up of a transistor and capacitors utilizing capacitive characteristics, carries out successive starting trial and end-of-life protection. Lamp ignition is completed within 0.5 seconds with taking advantage of a high preheating current from the half-wave rectifier circuit. Nevertheless, its performance is proved to be very excellent through a standard switching endurance test.

  • PDF

입력 전류 파형 개선을 위한 다펄스 3상 다이오드 전압원 정류 시스템 (A Multipulse-Voltage Source Rectifier System with a Three-Phase Diode Circuit in order to improve the Input Current Waveforms)

  • 임성근;박현철;이성룡;유철로
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.853-855
    • /
    • 1993
  • In this paper, a further improved system obtaining very low distorted waveforms of input ac currents of three phase rectifier circuit is proposed. The proposed system consists of an uncomplicated 24 pulse diode bridge rectifier that is transformerless, by adding only switching circuit which consists of two switchs to conventional system. Also to optimum the effectiveness or the harmonic reduction, the optimum turn ratio of an autotransformer and the optimum switching control angle are decided by computer simulation. And then, the voltage waveform obtained has a total harmonic distortion of 8.1%, and the predominant harmonics 23th and 25th. This paper describes operation principle, analysis of the waveforms of input voltage and current. The theoretial results are verified through simulation.

  • PDF