• Title/Summary/Keyword: Switching rectifier

Search Result 392, Processing Time 0.02 seconds

DC Ripple-Voltage Suppression in three Phase BUCK DIODE Rectifiers with Unity Power Factor (단위 역률을 갖는 3상 BUCK 다이오드 정류기에서의 DC 리플-전압 저감)

  • Lee, D.Y.;Song, J.H.;Choi, J.Y.;Choy, I.;Kim, G.B.;Hyun, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2653-2655
    • /
    • 1999
  • A technique to suppress the low frequency ripple voltage of the DC output voltage in three-phase buck diode rectifiers is presented. A pulse frequency modulation method is employed to regulate the output voltage of the rectifier and guarantee zero-current switching of the switch over the wide operating range. The pulse frequency control method used in this paper shows generally good performance such as low THD of the input line current and unity power factor. In addition, the pulse frequency method can be effectively used to suppress the low frequency voltage ripple appeared in the dc output voltage. The proposed technique illustrates its validity and effectiveness through the respective simulations and experiments.

  • PDF

Stress Comparison of CM ZVS-MRC and AT Forward MRC (클램프모드 포워드 다중 공진형 컨버터와 AT 포워드 다중 공진형 컨버터의 스트레스 비교)

  • Oh, Duk-Jin;Kim, Hee-Jun;Kim, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2698-2700
    • /
    • 1999
  • The MRC minimizes a parasitic oscillation using the resonant tank circuit absorbed parasitic reactances existing in a converter circuit. So the converter is capable of operating at a high switching and also reducing the losses. But the resonant voltage stress across a resonant switch is 4-5 times a input voltage. This high voltage stress increases the conduction loss in MOSFET. In this paper, the CM forward MRC with synchronous rectifier and AT forward MRC are compared about efficiency and semiconductor stress. For analysis, we have built a 50W CM forward MRC and a 50W AT forward MRC. in which the input voltage is 48V, output voltage is 5V, each other. The measured voltage stress is about 170V of 2.9 times the input voltage in the AT Forward MRC, about 106V of 1.8 times the input voltage in CM forward MRC, and the efficiency is 81.05% in AT Forward MRC, 83.61% in CM forward MRC.

  • PDF

Development of 900 V Class MOSFET for Industrial Power Modules (산업 파워 모듈용 900 V MOSFET 개발)

  • Chung, Hunsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.

Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch (삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Park, Jung-Il;Cho, Geum-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

A New PWM-Controlled Quasi-Resonant Converter for High Efficiency PDP Sustaining Power Module (고효율의 PDP 유지 구동 전원단을 위한 새로운 펄스폭 제어방식의 쿼지 공진 컨버터)

  • Lee Woo-Jin;Choi Seong-Wook;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.352-355
    • /
    • 2006
  • A new PWM-controlled quasi-resonant converter for high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with hi-directional auxiliary circuit, while the main switches are operating at the fixed duty ratio and fixed switching frequency. Hence, the waveform of currents can be expected to be optimized on the conduction loss. Furthermore, the proposed converter shows the good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stress of power switches. In this paper, operational principles, analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit as PWM method.

  • PDF

A New PWM-Controlled Quasi-Resonant Converter for a High Efficiency PDP Sustaining Power Module

  • Lee, Woo-Jin;Choi, Seong-Wook;Kim, Chong-Eun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • A new PWM-controlled quasi-resonant converter for a high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with a bi-directional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stresses of power switches. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.

High-Power Electronic Ballast Design for Metal-Halide Lamp without Acoustic Resonance (음향 공명 현상을 제거한 MHL용 고출력 전자식 안정기 설계)

  • Park, Chong-Yun;Kim, Ki-Nam;Lee, Bong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1187-1194
    • /
    • 2008
  • This paper presents a high-power electronic ballast for a metal-hallide lamp(MHL) that employs frequency modulation(FM) technique to eliminate acoustic resonance(AR). The proposed ballast consists of a full-bridge rectifier, a power factor correction(PFC) circuit, a full-bridge(FB) inverter, an ignitor using LC resonance and an FM control circuit. Whereas a manual PFC provides advantages in terms of high reliability and low cost for constructing the circuit, it is difficult to supply a stable voltage because of the output voltage ripple that occurs with a period of 120Hz. Although the ballast can be designed with a small size and a light weight if it is driven at a switching frequency between 1 and 100 kHz, AR will occur if the eigen-value frequency of the lamp coincides with the inverter's operation frequency. The operation frequency was modulated in real time according to the output voltage ripple to compensate for the variation in power supplied to the lamp and eliminate AR. Performance of the proposed technique was validated through numerical analysis, computer simulation using PSPICE and by applying it to an electronic ballast for a prototype 1kW MHL.

Implementation of an Interleaved AC/DC Converter with a High Power Factor

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • An interleaved bridgeless buck-boost AC/DC converter is presented in this paper to achieve the characteristics of low conduction loss, a high power factor and low harmonic and ripple currents. There are only two power semiconductors in the line current path instead of the three power semiconductors in a conventional boost AC/DC converter. A buck-boost converter operated in the boundary conduction mode (BCM) is adopted to control the active switches to achieve the following characteristics: no diode reverse recovery problem, zero current switching (ZCS) turn-off of the rectifier diodes, ZCS turn-on of the power switches, and a low DC bus voltage to reduce the voltage stress of the MOSFETs in the second DC/DC converter. Interleaved pulse-width modulation (PWM) is used to control the switches such that the input and output ripple currents are reduced such that the output capacitance can be reduced. The voltage doubler topology is adopted to double the output voltage in order to extend the useable energy of the capacitor when the line voltage is off. The circuit configuration, principle operation, system analysis, and a design example are discussed and presented in detail. Finally, experiments on a 500W prototype are provided to demonstrate the performance of the proposed converter.

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.

Electronic Ballast Design Driven by Low Frequency Square Wave for High Power MHL (고출력 MHL용 구형저주파 구동 방식의 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.394-400
    • /
    • 2010
  • In this paper, We proposed electronic ballast that applys Buck Converter operation principle to Full-Bridge inverter. The proposed ballast consists of an EMI Filter, a full-bridge rectifier, a passive power factor correction (PFC) circuit and a full-bridge inverter. The passive PFC is used and a Full-Bridge inverter operation by two frequency. High Side and Low Side switch was driven by high frequency and low frequency and realized buck Converter's operation. The lamp is driven by Low Frequency square wave to avoid Acoustic Resonance. Also, bulk of inductor is reduced by high frequency switching. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 700W MHL.