• Title/Summary/Keyword: Switching power

Search Result 4,309, Processing Time 0.028 seconds

$H_{\infty}$ Switching PSS and Load Variation Analysis ($H_{\infty}$ 스위칭 제어 비선형 전력계통안정화장치(NPSS) 설계 및 부하변동 분석)

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.229-231
    • /
    • 2005
  • This paper presents the nonlinear $H_{\infty}$ switching power system stabilizer (PSS) based on Lie group and Lie transformation theory. The proposed controller combines the $H_{\infty}$ switching controller and Lie theory. The proposed power system stabilizer (PSS) is used to improve the transient stability in the time-domain and to solve the problem associated with the inaccessible state variables by measuring only the angular velocity. In the simulation study, the different load conditions, fault periods, and fault locations are considered. The nonlinear time-domain simulation showed that the proposed controller was effective restoring transient stability in a one-machine infinite-bus power system.

  • PDF

A 40-W Flyback Converter with Dual-Operation Modes for Improved Light Load Efficiency

  • Kang, Jin-Gyu;Park, Jeongpyo;Gong, Jung-Chul;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.493-500
    • /
    • 2015
  • A flyback converter operates with either pulse width modulation (PWM) or pulse frequency modulation (PFM) control scheme depending on the load current. At light load condition, PFM control is employed to reduce the switching frequency and thereby minimize the switching power loss. For heavier load, PWM control is used to regulate the output voltage of the flyback converter. The flyback controller has been implemented in a $0.35{\mu}m$ BCDMOS process and applied to a 40-W flyback converter. The light-load power efficiency of the flyback converter is improved up to 5.7-% comparing with the one operating with a fixed switching frequency.

Method of SSO Noise Reduction on FPGA of Digital Optical Units in Optical Communication

  • Kim, Jae Wan;Eom, Doo Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.97-101
    • /
    • 2013
  • There is a growing need for optical communication systems that convert large volumes of data to optical signals and that accommodate and transmit the signals across long distances. Digital optical communication consists of a master unit (MU) and a slave unit (SU). The MU transmits data to SU using digital optical signals. However, digital optical units that are commercially available or are under development transmit data using two's complement representation. At low input levels, a large number of SSOs (simultaneous switching outputs) are required because of the high rate of bit switching in two's complement, which thereby increases the power noise. This problem reduces the overall system capability because a DSP (digital signal processor) chip (FPGA, CPLD, etc.) cannot be used efficiently and power noise increases. This paper proposes a change from two's complement to a more efficient method that produces less SSO noise and can be applied to existing digital optical units.

Conducted Noise Reduction in Three-Phase Boost Converter using Random (3상 승압형 컨버터에 의한 전도노이즈 감소)

  • Jung, Dong-Hyo;Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.79-82
    • /
    • 2003
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A Novel Boost PFC Converter Employing ZVS Based Compound Active Clamping Technique with EMI Filter

  • Mohan, P. Ram;Kumar, M. Vijaya;Reddy, O.V. Raghava
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • A Boost Power Factor Correction (PFC) Converter employing Zero Voltage Switching (ZVS) based Compound Active Clamping (CAC) technique is presented in this paper. An Electro Magnetic Interference (EMI) Filer is connected at the line side of the proposed converter to suppress Electro Magnetic Interference. The proposed converter can effectively reduce the losses caused by diode reverse recovery. Both the main switch and the auxiliary switch can achieve soft switching i.e. ZVS under certain condition. The parasitic oscillation caused by the parasitic capacitance of the boost diode is eliminated. The voltage on the main switch, the auxiliary switch and the boost diode are clamped. The principle of operation, design and simulation results are presented here. A prototype of the proposed converter is built and tested for low input voltage i.e. 15V AC supply and the experimental results are obtained. The power factor at the line side of the converter and the converter efficiency are improved using the proposed technique.

Design of New Current Full-Bridge Resonant Inverter for Induction Heating System (유도가열 시스템을 위한 새로운 전류형 풀-브릿지 공진형 인버터 설계)

  • Lee, Sang-Hun;Lim, Sang-Kil;Song, Seung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.59-69
    • /
    • 2012
  • There are two types of inverters that are generally used in induction heating systems: voltage type inverters and high-frequency half-bridge inverters. This paper proposes a new resonant inverter for induction heating systems using the current type full-bridge method. The proposed method can remove capacitors at the input end, and enables unity power factor operation by preventing phase differences of voltage and current. Furthermore, Zero Voltage Switching (ZVS) which is in tune with current type inverter can be adopted and continuous power adjustment is possible through duty ratio changes and frequency modulation in switching operation. Simulations and experiments showed that the proposed current type full-bridge resonant inverter could be used for unity power factor control and ZVS operation in induction heating systems.

Feasibility Study of Distributed Auxiliary Resonant Commutation Snubber Linked Three Phase Voltage Source ZVS Inverter with Digital Servo Control Implementation

  • Hiraki, E.;Hattori, H.;Nakaoka, M.;Horiuchi, T.;Sugawara, Y.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.341-345
    • /
    • 1998
  • This paper presents performance and loss analysis of Auxiliary Resonant Commutation Snubber-linked (ARCS) three phase voltage source soft switching inverter which is operated under a condition of Zero Voltage Switching (ZVS). The system performances of this ARCS soft switching inverter which is controlled on optimal type I digital servo scheme are illustrated and evaluated on the basis of experimental results.

  • PDF

Analytical Model of Conduction and Switching Losses of Matrix-Z-Source Converter

  • You, Keping;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.275-287
    • /
    • 2009
  • This paper investigates analytical models of Conduction and Switching Losses (CASLs) of a matrix-Z-source converter (MZC). Two analytical models of the CASLs are obtained through the examination of operating principles for a Z-source inverter and ac-dc matrix converter respectively. Based on the two models, the analytical model of CASLs for a MZC is constructed and visualized over a range of exemplified operating- points, each of which is defined by the combination of power factor (pt) and modulation index (M). The model provides a measurable way to approximate the total losses of the MZC.

Current Control Scheme of High Speed SRM Using Low Resolution Encoder

  • Khoi, Huynh Khac Minh;Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • This paper presents a balanced soft-chopping circuit and a modified PI controller for a high speed 4/2 Switched Reluctance Motor (SRM) with a 16 pulse per revolution encoder. The proposed balanced soft-chopping circuit can supply double the switching frequency in the fixed switching frequency of power devices to reduce current ripple. The modified PI controller uses maximum voltage, back-emf voltage and PI control modes to overcome the over-shoot current due to the time delay effect of current sensing. The maximum voltage mode can supply a fast excitation current with consideration of the hardware time delay. Then the back-emf voltage mode can suppress the current over-shoot with consideration of the feedback signal delay. Finally, the PI control mode can adjust the phase current to a desired value with a fast switching frequency due to the proposed balanced soft-chopping technology.

Synchronization on the Points of Turn -off Time of Series-Connected Power Semiconductor Devices Using the Miller Effect (전력용 반도체 소자의 직렬연결시 밀러효과를 이용한 소호시점 동기화 알고리즘)

  • 심은용;서범석;이택기;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.237-243
    • /
    • 1992
  • The large value of the snubber capacitor is needed to protect the devices in high voltage converters using series connected power semiconductors. But that results in more losses and longer commutation time. So, new technique of series connection is required, which can minimize the value of snubber capacitor and also promote the reliability of high voltage converters. We study on the switching characteristics of series connected power semiconductors and then propose a novel switching algorithm for series-connection which is able to implement not only the dynamic voltage balancing in spite of the differerce of switching characteristics, but the minimization of the value of snubber capacitor, through the change of the value of snubber capacitor by Miller effect. Finally, we illustrate the validity of this synchronization by computer simulation and experimental results.

  • PDF