• Title/Summary/Keyword: Switching power

Search Result 4,308, Processing Time 0.036 seconds

A Study on Novel Step-Up AC-DC Chopper of High Efficiency by using Lossless Snubber Capacitor (새로운 무손실 스너버 커패시터를 이용한 고효율 스텝 업 AC-DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1103-1104
    • /
    • 2008
  • In this paper, authors propose a novel step-up AC-DC chopper operated with power factor correction (PFC) and with high efficiency. The proposed chopper behaves with discontinuous current control (DCC) of input current. The input current waveform in the proposed chopper is got to be a discontinuous sinusoid form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control method is simple. In the general DCC chopper, the switching devices are turned-on with the zero current switching, but turn-off of the switching devices is switched at current maximum value. To achieve a soft switching of the switching turn-off, the proposed chopper is used a new partial resonant circuit. The result is that the switching loss is very low and the efficiency of chopper is high.

  • PDF

An Improved Zero Voltage Switching Forward DC/DC Converter For Reducing Switching Losses

  • Kim, Eun-Soo;Joe, Kee-Yeon;Park, Hae-Young;Kim, Yoon-Ho;Kim, Choon-Same
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1051-1055
    • /
    • 1998
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

A Soft-Switching Technique of Matrix Converters using Auxiliary Switch (보조스위치를 이용한 매트릭스 컨버터(Matrix Converter)의 소프트스위칭 기법)

  • Um, Tae-Wook;Kim, Yoon-Ho;Kim, Seung-Mo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.519-524
    • /
    • 2002
  • This paper presents a soft-switching technique of single-stage power conversion Matrix Converter of AC-AC converters. Conventional hard-switching method is limited to operate at low switching frequency due to increased switching loss. In this paper, by additional auxiliary switch circuits, it is shown that the main switch of the matrix converter operate as a zero-voltage switches, and the auxiliary switch operate as a zero current switch. Finally, the soft-switching technique with auxiliary switches is compared with conventional hard-switching technique, and Is analyzed by simulation.

  • PDF

Design and analysis of high efficiency soft switching boost converter (고효율 소프트 스위칭 부스트 컨버터의 설계 및 해석)

  • Park, So-Ri;Park, Sang-Hoon;Cha, Kil-Ro;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.121-123
    • /
    • 2008
  • A high efficiency soft switching boost converter is proposed in this paper. The conventional boost converter generates switching losses at turn on and off. Because of those, the whole system efficiency is reduced. The proposed converter utilizes soft switching method using resonant circuit with an auxiliary switch. Therefore, the proposed converter reduces switching losses lower than the hard switching. The proposed soft switching boost converter can be applied to photovoltaic system, power factor correction circuit and etc.

  • PDF

A Study on the Design of a Pulse-Width Modulation DC/DC Power Converter

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • DC/DC Switching power converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. A switching converter utilizes one or more energy storage elements such as capacitors, or transformers to efficiently transfer energy from the input to the output at periodic intervals. The fundamental boost converter studied here consists of a power metal-oxide semiconductor field effect transistor switch, an inductor, a capacitor, a diode, and a pulse-width modulation circuit with oscillator, amplifier, and comparator. A buck converter containing a switched-mode power supply is also studied. In this paper, the electrical characteristics of DC/DC power converters are simulated by simulation program with integrated circuit emphasis (SPICE). Furthermore, power efficiency was analyzed based on the specifications of each component.

High Power Circuit Analysis with the Simulation Technique using Physical Models of Power Devices (물리적인 전력소자 모텔을 이용한 대용량 인버터 시뮬레이션 기술)

  • Yoon Jae Hak;Schroder D.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.330-333
    • /
    • 2002
  • The design of high power electronic circuits and the verification of the design by practical experiments are time and cost consuming. Recently power circuit simulation technique is developing to do it easily. However, most of the simulation has used the ideal switch model consists of passive component that can not describe the physical characteristics of semiconductor devices and cannot describe the switching transient state. For the design of such power electronic circuits by the simulation, the switching transients are very important. Therefore the simulation models must describe the switching transient and the stationary behavior as precisely as possible on the hand and as fast as possible the other hand. This paper introduces the application of the physical models of power devices that are developed by TUM(Technical University of Munich, Germany) for the power electronic circuit analysis.

  • PDF

Analysis of partial resonant AC-DC converter for high power and power factor

  • Mun, Sang-Pil;Kim, Si-Lyur;Lee, ki-Youn;Hyun-Woo;Katsunori taniguchi, Katsunori-Taniguchi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.920-927
    • /
    • 1998
  • This paper proposed that an Analysis of a partial resonant AC-DC converter for high power and power factor operates with four choppers connecting to a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of lose-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used

  • PDF

An Application Study of System Stabilizing Control Scheme by Switching-over Control (한전계통에 대한 안정화제어 방안의 적용연구)

  • Kim, Tae-Kyun;Cho, Kang-Wook;Kim, Yong-Hak;Kim, Il-Dong;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1109-1111
    • /
    • 1997
  • The purpose of this paper is to analyze the effects of switching-over control for power system stabilization. Switching-over control is applied to western part of korea electric power system to improve transient stability and short-circuit capacity. It's effectiveness is demonstrated in terms of fault current level and critical clearing time which is quantitative evaluation means of transient stability. The effect of generator tripping for power system stabilization is also presented.

  • PDF

High Efficiency Power Conversion Device for Photovoltaic Power Generation (태양광 발전을 위한 고효율 전력변환장치)

  • Kim, Young-Cheal;Suh, Ki-Young;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.450-452
    • /
    • 1996
  • In this paper, the authors propose a DC-DC boost converter of high efficiency by partial resonant switching mode, the switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber inconventional circuit. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Multiple Buck-Chopper using Partial Resonant Switching

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Chun Jung-Ham
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.189-192
    • /
    • 2001
  • This paper proposed that an AC-DC converter system using multiple buck-chopper operates with four choppers connecting to a number of parallel circuits. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF