• 제목/요약/키워드: Switching power

검색결과 4,308건 처리시간 0.029초

Design of A 2KW Soft-Switching ZVT Power Factor Correction Converter With Active Snubbers

  • Park, Kyoung-Soo;Kim, Yoon-Ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.790-794
    • /
    • 2001
  • In this paper a soft switching ZVT power factor converter using active snubbers is designed to improve efficiency and reduce voltage spike and parasitic ringing. The main switch achieves ZVT and the auxiliary switch performs with ZCS. A 2KW soft switching ZVT converter is designed with switching frequency 100kHz, output voltage 400VDC. Then the designed system is realized and experimental results show that the measured efficiency and power factor are over $97.45\%$ and 0.997 respectively with an input current THD less than $3\%$.

  • PDF

Resonant Pulse Power Converter with a Self-Switching Technique

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.784-791
    • /
    • 2010
  • In this paper, a resonant pulse power converter (RPPC) is proposed. The proposed RPPC transfers the pulse-shape power from a DC source to a load periodically. The RPPC consists of a resonant circuit and a resonant pulse converter driven by a self-switching circuit. Depending on the magnitude difference between the input and output voltages, the operations of the RPPC are divided into 4 modes; boost mode, hybrid mode, direct mode and cut-off mode, respectively. The main switch of the RPPC turns on in the ZCS condition and off in the ZVS condition spontaneously. The operational principles of a RPPC using the self-switching technique are analyzed and verified in experiments. An example of a RPPC application is demonstrated in the area of thermoelectric energy harvesting.

넓은 공극 범위에서도 안정된 소프트 스위칭 동작 가능한 개선된 무선 전력 충전 시스템 (An Improved Wireless Power Charging System Capable of Stable Soft-Switching Operation Even in Wide Air Gaps)

  • 우정원;문유진;김은수
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.180-191
    • /
    • 2022
  • In this paper, a single-stage alternating current (AC)-DC converter is proposed for the automated-guided vehicle wireless charging system. The proposed converter is capable of soft-switching under all input voltage (VAC: 220 Vrms ± 10%), load conditions (0-1 kW), and air gap changes (40-60 mm) by phase control at a fixed switching frequency. In addition, controlling a wide output voltage (Vo: 39~54 VDC) is possible by varying the link voltage and improving the input power factor and the total harmonic distortion factor. Experimental results were verified by making a prototype of a 1-kW wireless power charging system that operates with robustness to changes in air gaps.

An Improved Switching Topology for Single Phase Multilevel Inverter with Capacitor Voltage Balancing Technique

  • Ponnusamy, Rajan Soundar;Subramaniam, Manoharan;Irudayaraj, Gerald Christopher Raj;Mylsamy, Kaliamoorthy
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.115-126
    • /
    • 2017
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a reduced number of isolated DC sources and power semiconductor switches. The proposed inverter has only two H-bridges connected in cascade, one switching at a high frequency and the other switching at a low frequency. The Low Switching Frequency Inverter (LSFI) generates seven levels whereas the High Switching Frequency Inverter (HSFI) generates only two levels. This paper also presents a solution to the capacitor balancing issues of the LSFI. The proposed inverter has lot of advantages such as reductions in the number of DC sources, switching losses, power electronic devices, size and cost. The proposed inverter with a capacitor voltage balancing algorithm is simulated using MATLAB/SIMULINK. The switching logic of the proposed inverter with a capacitor voltage balancing algorithm is developed using a FPGA SPATRAN 3A DSP board. A laboratory prototype is built to validate the simulation results.

Analysis, Design, and Implementation of a Zero-Voltage-Transition Interleaved Boost Converter

  • Ting, Naim Suleyman;Sahin, Yakup;Aksoy, Ismail
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.41-55
    • /
    • 2017
  • This study proposes a novel zero voltage transition (ZVT) pulse width modulation (PWM) DC-DC interleaved boost converter with an active snubber cell. All the semiconductor devices in the converter turn on and off with soft switching to reduce the switching power losses and improve the overall efficiency. Through the interleaved approach, the current stresses of the main devices and the ripple of the output voltage and input current are reduced. The main switches turn on with ZVT and turn off with zero voltage switching (ZVS). The auxiliary switch turns on with zero current switching (ZCS) and turns off with ZVS. In addition, the snubber cell does not create additional current or voltage stress on the main switches and main diodes. The proposed converter can smoothly achieve soft switching characteristics even under light load conditions. The theoretical analysis and operating stages of the proposed converter are made for the D > 50% and D < 50% modes. Finally, a prototype of the proposed converter is implemented, and the experimental results are given in detail for 500 W and 50 kHz. The overall efficiency of the proposed converter reached 95.5% at nominal output power.

저압용차단기 전원 개폐시 개인용 PC에 미치는 영향 분석 (Analysis of Effect on Personnel Computer in case of turning off Power supply of Circuit Breaker for Low Voltage)

  • 길형준;송길목;김영석;김종민
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.124-129
    • /
    • 2014
  • This paper describes the analysis of the effect on personnel computer in case of turning off power supply of main breaker in general electrical installation. In order to analyze the effect on personnel computer in case of turning off the power supply of main breaker, the switching impulse generator has been designed and fabricated which makes it possible to evaluate the effect on electrical product by switching impulse. The switching impulse tests were carried out for personnel computer according to applied voltage and number of switching impulse. As a consequence, switching impulse had not a significant influence on personnel computer in this study. The varistor of power input section functions as a protection of switching impulse as well as lightning impulse. The results will be used to related organization, and electrical product manufacturer, and residents.

A Double-Hybrid Spread-Spectrum Technique for EMI Mitigation in DC-DC Switching Regulators

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.342-350
    • /
    • 2010
  • Randomizing the switching frequency (RSF) to reduce the electromagnetic interference (EMI) of switching power converters is a well-known technique that has been previously discussed. The randomized pulse position (RPP) technique, in which the switching frequency is kept fixed while the pulse position (the delay from the starting of the switching cycle to the turn-on instant within the cycle) is randomized, has been previously addressed in the literature for the same purpose. This paper presents a double-hybrid technique (DHB) for EMI reduction in dc-dc switching regulators. The proposed technique employed both the RSF and the RPP techniques. To effectively spread the conducted-noise frequency spectrum and at the same time attain a satisfactory output voltage quality, two parameters (switching frequency and pulse position) were randomized, and a third parameter (the duty ratio) was controlled by a digital compensator. Implementation was achieved using field programmable gate array (FPGA) technology, which is increasingly being adopted in industrial electronic applications. To evaluate the contribution of the proposed DHB technique, investigations were carried out for each basic PWM, RPP, RSF, and DHB technique. Then a comparison was made of the performances achieved. The experimentally investigated features include the effect of each technique on the common-mode, differential-mode, and total conducted-noise characteristics, and their influence on the converter’s output ripple voltage.

Self-Feeder Driver for Voltage Balance in Series-Connected IGBT Associations

  • Guerrero-Guerrero, A.F.;Ustariz-Farfan, A.J.;Tacca, H.E.;Cano-Plata, E.A.
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.68-78
    • /
    • 2019
  • The emergence of high voltage conversion applications has resulted in a trend of using semiconductor device series associations. Series associations allow for operation at blocking voltages, which are higher than the nominal voltage for each of the semiconductor devices. The main challenge with these topologies is finding a way to guarantee the voltage balance between devices in both blocking and switching transients. Most of the methods that have been proposed to mitigate static and dynamic voltage unbalances result in increased losses within the device. This paper introduces a new series stack topology, where the voltage unbalances are reduced. This in turn, mitigates the switching losses. The proposed topology consists of a circuit that ensures the soft switching of each device, and one auxiliary circuit that allows for switching energy recovery. The principle for the topology operation is presented and experimental tests are performed for two modules. The topology performs excellently for switching transients on each of the devices. The voltage static unbalances were limited to 10%, while the activation/deactivation delay introduced by the lower module IGBT driver takes place in the dynamic unbalances. Thus, the switching losses are reduced by 40%, when compared to hard switching configurations.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권4호
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

전파형 ZVT-PWM DC-DC 컨버터 (Full Wave Mode ZVT-PWM DC-DC Converters)

  • 김태우;안희욱;김학성
    • 전력전자학회논문지
    • /
    • 제6권3호
    • /
    • pp.243-249
    • /
    • 2001
  • 본 논문에서는 전파형 ZVT-PWM 승압형 컨버터를 제안한다. 보조 스위치를 전파형 모드에서 동작을 시킴으로써, 기존의 컨버터에서 보조 스위치가 턴-오프 순간에 하드 스위칭(hard switching)을 하는 반면에 제안된 컨버터는 수동 및 능동 소자를 추가하지 않고 보조 스위치의 턴-오프 손실과 스위칭 잡음(noise)을 줄였고 그리고 고전력 밀도 시스템을 구현할 수 있다.

  • PDF