• Title/Summary/Keyword: Switching power

Search Result 4,307, Processing Time 0.029 seconds

Implementation of Cuckoo Search Optimized Firing Scheme in 5-Level Cascaded H-Bridge Multilevel Inverter for Power Quality Improvement

  • Singla, Deepshikha;Sharma, P.R.
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1458-1466
    • /
    • 2019
  • Multilevel inverters have appeared as a successful and utilitarian solution in many power applications. The prime objective of an inverter is to keep the fundamental component of the output voltage of a multilevel inverter at a preferred value. Equally important is the need to keep the harmonic components in the output voltage within stated harmonic limits. Therefore, the basis of this research is to develop a harmonic minimization function that optimizes the switching angles of cascaded H-bridge multilevel inverter. Due to benefits of the Cuckoo Search (CS) algorithm, it is applied to determine the switching angles, which are further used to generate the switching pattern for firing the H-bridges of multilevel inverter. Simulation results are compared with SPWM based firing scheme. The switching frequency for SPWM firing scheme is taken as 200 Hz since the switching losses are increased when switching frequency is high. To validate the ability of Cuckoo Search optimized firing scheme in minimization of harmonics, experimental results obtained from hardware prototype of Five Level Cascaded H-Bridge Multilevel Inverter equipped with a FPGA controller are presented to verify the simulation results.

SRM의 최대 토크, 효율 및 최소 토크리플 운전을 위한 스위칭 각 (Switching Angle for Maximizing Torque, Efficiency and Minimizing Torque Ripple in SRM Drive)

  • 김현덕;차현록;김광헌;나석환;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.151-154
    • /
    • 1999
  • This paper presents a driving method of 3-phase 4-poles SRM(switched reluctance motor) drived by switching angle control. In this study, the switching angle is determined from approximated analysis and computer simulation by using MATLAB for high efficiency according to the speed and torque required by load, and then microcontroller controls the switching angle of asymmetrical inverter in SRM driver. Also, we experiment the maximum forque driving and maximum power driving by controlling switching angle available to electric vehicle.

  • PDF

비자성 유도가영시스템을 위한 IGBT를 이용한 고속스위칭 구동에 관한 연구 (The Study on High-Frequency Switching Drive Method Using IGBT For Non-Magnetic Induction Heating System)

  • 김정태;권경안;정윤철;박병욱
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.24-26
    • /
    • 1998
  • A new high frequency switching drive method using IGBT is proposed for non-magnetic induction heating system. Using this method, the switching and conduction losses of the switching devices can be reduced. In addition, since IGBT cosl is lower than MOS-FET one, the system cosl can be remarkably pared down. The prototype induction heating system with 1.2㎾ power consumption is builted and tested to verify the operation of the proposed high frequency switching drive method.

  • PDF

소프트 스위칭 기술을 이용한 오디오용 파워앰프 (ZVT-PWM Amplifier for Audio Applications)

  • 서동현;조보형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2145-2147
    • /
    • 1998
  • This paper presents a Class-D type switched mode audio power amplifier employing ZVT(Zero-Voltage-Transition) soft switching technique. In order to obtain a wide bandwidth and lower distortion for an audio amplifier a high switching frequency is essential. The ZVT switching scheme enables a high frequency switching without sacrificing the efficiency much as in a hard switching. A prototype amplifier is built to demonstrate the feasibility of this technique for the audio power amplifier.

  • PDF

New Circuit Topology of Single-Ended Soft-Switching PWM High Frequency Inverter and Its Performance Evaluations

  • Deguchi Y.;Moisseev S.;Nakaoka M.;Hirota I.;Yamashita H.;Omori H.;Terai H.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.247-250
    • /
    • 2001
  • This paper presents a simple and cost effective circuit topology of single-ended type high frequency quasi-resonant PWM inverter using IGBTs, which can operate under wide soft switching operation range based on ZCS for main power switch as compared with a conventional active voltage-clamped ZVS-PWM high frequency quasi-resonant inverter developed previously. In principle, this new circuit topology can efficiently operate under a constant frequency PWM control-based power regulation scheme. In particular, it is noted that the zero current soft switching (ZCS) commutation can achieve for the main active power switch. On the other hand, the zero voltage soft switching (ZVS) commutation can also achieve for the auxiliary active power switch. The operating principle of this high-frequency Inverter treated here and its power regulation characteristics are illustrated on the basis of the simulation and feasible experimental results.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

The Study on Miniaturization and Weight Reduction of Auxiliary Power Unit in Magnetic Levitation Train

  • Lee, Na Ri;Shin, Hee Keun;Choi, Sung Ho;Kim, Ju Bum;Lim, Jae Won;Park, Doh Young;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • 제8권1호
    • /
    • pp.10-14
    • /
    • 2015
  • Due to the characteristics of the vehicle structure, the magnetic levitation train has a confined bottom space thus a study on miniaturization and weight reduction of auxiliary power unit is essential. This auxiliary power unit is an essential device used for illumination, air conditioning, heating and air brake equipment excluding the motor. The previous auxiliary power unit for magnetic levitation train has used the hard switching having a high switching frequency with heavy loss in order to reduce the size of filter reactor and transformer but the reduction in volume was not significant. In this paper, by reducing the loss, reducing the size of the cooling unit and by increasing the switching frequency using the soft switching of resonant converter, it has miniaturized and reduced the weight of filter reactor and transformer which occupy significant space in the auxiliary power unit. This study has verified the performance of 50KVA grade prototype through simulated interpretation and analysis, and compared the size and weight of auxiliary power unit of the previous magnetic levitation train.

Analysis and Specifications of Switching Frequency in Parallel Active Power Filters Regarding Compensation Characteristics

  • Guopeng, Zhao;Jinjun, Liu
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.749-761
    • /
    • 2010
  • The switching frequency of a power device is a very important parameter in the design of a parallel active power filter (PAPF), but so far, very little discussion has been conducted on it in a quantitative manner in previous publications. In this paper, an extensive analysis on the effects of the switching frequency on the performance of a PAPF is made, and a specification of the switching frequency values with different compensation results is presented. A first-order inertia element and a second-order oscillation element are considered as approximate models of a PAPF, respectively. The compensation characteristic for each order of harmonic current is obtained at different switching frequencies. Then, the THDs of each model for the system loads of a rectifier with resistance and inductance loads are proposed. The compensation results of a PAPF controlled as a first-order inertia element are better than those of a PAPF controlled as a second-order oscillation element. With two types of system loads which are rectifier with resistance and inductance loads and rectifier with resistance, inductance and capacitance loads, the THDs of the source current after compensation are presented with different switching frequencies. The compensation characteristics for the most widely used digital control system are investigated. The situation with an analog control is the theoretical characteristic and it is the best situation. The compensation characteristic of the digital control is worse than the compensation characteristic of the theoretical characteristic. Based on these analyses, the specifications of compensation characteristics with different switching frequencies are quite straightforward. Finally, a practical design example is studied to verify the application.

Constant Frequency Adjustable Power Active Voltage Clamped Soft Switching High Frequency Inverter using The 4th-Generation Trench-Gate IGBTs

  • Miyauchi T.;Hirota I.;Omori H.;Terai H.;Abdullah Al Mamun;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.236-241
    • /
    • 2001
  • This paper presents a novel prototype of active voltage-clamping capacitor-assisted edge resonant soft switching PWM inverter operating at a constant frequency variable power (VPCF) regulation scheme, which is suitable for consumer high-power induction-heating cooking appliances. New generation IGBT with a trench gate is particularly improved in order to reduce conduction loss due to its lowered saturation voltage characteristics. The soft switching load resonant and quasi-resonant inverter designed distinctively using the latest IGBTs is evaluated from an experimental point of view.

  • PDF