• Title/Summary/Keyword: Switching power

Search Result 4,308, Processing Time 0.033 seconds

Sensitivity Analysis of Power System Oscillation Modes Induced by Periodic Switching Operations of SVC by the RCF Method (RCF 기법을 이용한 SVC의 주기적 스위칭 동작에 의한 전력계통 진동모드 감도해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.363-368
    • /
    • 2008
  • In this paper, the Resistive Companion Form(RCF) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS equipments such as SVC. The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including SVC. As a result of simulation, the RCF analysis method is proved very effective to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of SVC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and proved that the RCF analysis method is very effective to analyze the discrete power systems including periodically operated switching equipments such as SVC.

A Study on DC-DC Converter for X-Ray Using Soft-Switching Method (소프트 스위칭 방식을 이용한 X-Ray용 DC-DC Converter에 관한 연구)

  • Kim, Hack-Seong;Kim, Hyen-Joon;Won, Chung-Yuen;Yoo, Dong-Wook;Ha, Sung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.379-381
    • /
    • 1994
  • This paper is concerned with a zero-voltage soft-switching PWM DC-DC high-pelter converter using IGBTs, which Bakes the most of the parastic LC parameters of high-voltage transformer link, for diagnostic X-Ray power generator. The converter circuit basically utilizes phase-shift pulse width modulated series resonant full-bridge PWM DC-DC high-Power converter operating at a constant frequency:20kHz. This technique brings about dramatic decreases in the switching losses of power devices and their electrical stresses as compared with the commonly-used hard-switching PWM DC-DC power converter. The high-frequency switching operation of the converters has some effective advantages, which consist in the physical reduction in size and weight and lowered acoustic noise.

  • PDF

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

A study on an algorithm based on sensitivity method for alleviating overloads in power networks (송전선로 과부하를 해소하기 위한 민감도에 근거한 알고리즘 연구)

  • Lee, Byung-Ha;Baek, Jung-Myoung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.286-290
    • /
    • 2007
  • In this paper, a new algorithm based on sensitivity method for alleviating overloads in power networks is presented to find the switching branches effectively. Preferentially the switching of shunt reactive devices such as shunt reactor and shunt capacitors is performed. If overloads are not eliminated, the ranking of switching branches is calculated according to the algorithm based on sensitivity method and the switching of the ranked branches is performed in the order of ranking until overloads are eliminated. In order to show the effects of this algorithm, it is applied to a small scale power system of IEEE 39-bus test system.

  • PDF

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

The Originating Characteristics of Periodic Impulse Noises in the Data Communication System by Distribution Line Carrier Method (배전선반송 데이타통신에서의 주기적 임펄스노이즈의 발생특성)

  • 최순만;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 1994
  • The existence of peroodic impulse noises in distribution line carrier (DLC) communication system is known to be the most serious obstacle for improving DLC communication quality in reliability and capacity. From the spectral points, impulse noises can be divided into baseband type and modulation type the noise width of whichs are much different each other. With each nose type, this study presents the basic characteristics in relation to what they originate from and how their spectrum properties are revealed. The baseband type impulse noise is normally caused from thyristor circuit running with low switching speed and the modulation type noise from the circuit of switching power supply. The base wave of modulation noise is shown to be the pulsuatic charging current to primary condenser in switching power circuit. The study result indicates also that placing the DLC carrier frequency away the band predominated by modulated noise especially from RCC type switching power circuit is very important in DLC design.

  • PDF

A Study on Isolated DCM Converter for High Efficiency and High Power Factor

  • Kwak, Dong-Kurl
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.477-483
    • /
    • 2010
  • This paper is studied on a novel buck-boost isolated converter for high efficiency and high power factor. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit makes use of a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuit and reduces a number of control components. The input ac current waveform in the proposed converter becomes a quasi sinusoidal waveform in proportion to the magnitude of input ac voltage under constant switching frequency. As a result, it is obtained by the proposed converter that the switching power losses are low, the efficiency of the converter is high, and the input power factor is nearly unity. The validity of analytical results is confirmed by some simulation results on computer and experimental results.

Switching Transient Analysis and Design of a Low Inductive Laminated Bus Bar for a T-type Converter

  • Wang, Quandong;Chang, Tianqing;Li, Fangzheng;Su, Kuifeng;Zhang, Lei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1256-1267
    • /
    • 2016
  • Distributed stray inductance exerts a significant influence on the turn-off voltages of power switching devices. Therefore, the design of low stray inductance bus bars has become an important part of the design of high-power converters. In this study, we first analyze the operational principle and switching transient of a T-type converter. Then, we obtain the commutation circuit, categorize the stray inductance of the circuit, and study the influence of the different types of stray inductance on the turn-off voltages of switching devices. According to the current distribution of the commutation circuit, as well as the conditions for realizing laminated bus bars, we laminate the bus bar of the converter by integrating the practical structure of a capacitor bank and a power module. As a result, the stray inductance of the bus bar is reduced, and the stray inductance in the commutation circuit of the converter is reduced to more than half. Finally, a 10 kVA experimental prototype of a T-type converter is built to verify the effectiveness of the designed laminated bus bar in restraining the turn-off voltage spike of the switching devices in the converter.

Continuous Conduction Mode Soft-Switching Boost Converter and its Application in Power Factor Correction

  • Cheng, Miao-miao;Liu, Zhiguo;Bao, Yueyue;Zhang, Zhongjie
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1689-1697
    • /
    • 2016
  • Continuous conduction mode (CCM) boost converters are commonly used in home appliances and various industries because of their simple topology and low input current ripples. However, these converters suffer from several disadvantages, such as hard switching of the active switch and reverse recovery problems of the output diode. These disadvantages increase voltage stresses across the switch and output diode and thus contribute to switching losses and electromagnetic interference. A new topology is presented in this work to improve the switching characteristics of CCM boost converters. Zero-current turn-on and zero-voltage turn-off are achieved for the active switches. The reverse-recovery current is reduced by soft turning-off the output diode. In addition, an input current sensorless control is applied to the proposed topology by pre-calculating the duty cycles of the active switches. Power factor correction is thus achieved with less effort than that required in the traditional method. Simulation and experimental results verify the soft-switching characteristics of the proposed topology and the effectiveness of the proposed input current sensorless control.

Induction Heating ZCS PWM SEPP High Frequency Inverter (유도가열용 ZCS PWM SEPP 고주파 인버터)

  • Mun, Sang-Pil;Gwon, Sun-Geol;Lee, Jong-Geol;Ju, Seok-Min;Gang, Sin-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.241-243
    • /
    • 2008
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Full)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF