• Title/Summary/Keyword: Switching mode power supply

Search Result 183, Processing Time 0.022 seconds

Analysing and comparing efficiency of harmonic reduction equipment for Induction Motor (유도전동기의 고조파 저감장치 성능 비교 분석)

  • Park, Yang-Birm;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.47-52
    • /
    • 2005
  • Recently, power conversion equipment increased rapidly makes a lot of harmonics. Thus, it is growing that wrong operation and break down of sensitive devices. There are two kinds of causes of harmonics. One of them is lots of power conversion equipment as modem controller, inverter, converter and SWS(Switching Mode Power Supply). Another is nonlinear operating machines as transformer and motor. The more nonlinear loads like them grow, the more serious problems as harmonic current to source and low power factor because of increasing reactive power grow. It is installed for reactor and L-C Filter to decrease harmonic in general. This paper analysis and compares two of characteristics and harmonic from reactor and L-C Filter with operation of induction motor and power conversion equipment. In the result, L-C Filter more improves unbalance rate and THD than reactor.

High Power-Factor Single-Stage Half-Bridge High Frequency Resonant Inver (고역률을 가지는 Single-Stage Half-Bridge 고주파 공진 인버터)

  • Won, Jae-Sun;Kim, Dong-Hee;Seo, Cheol-Sik;Cho, Gyu-Pan;Oh, Seung-Hoon;Jung, Do-Young;Bae, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1196-1198
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

Improved Sliding Mode Controller for Shunt Active Power Filter

  • Sahara, Attia;Kessal, Abdelhalim;Rahmani, Lazhar;Gaubert, Jean-Paul
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.662-669
    • /
    • 2016
  • In this work, nonlinear control of a three-phase shunt active power filter (SAPF) has been studied and compared to classical control based on proportional integral regulator. The control strategy is based on the direct current method using sliding mode control (SMC), where the aim is to regulate the average voltage across the dc bus of the inverter. Details are given for the control algorithm; the controller is comprised of a current loop which utilizes a hysteresis controller to generate the gating signals for the switching devices, and a nonlinear controller based on SMC law which is different from classical laws based on error between reference and measured output voltage of the inverter. Sliding surface applied in this work contains the whole of state variables, in order to ensure full control of the system behavior in the presence of disturbances that affect the supply source, the load parameters or the reference value. The designed controller offers advantage that it can gives the improvement of dynamic and static performances in cases of large disturbances. A comparison of the effects of PI control and SMC on the APF response in steady stat, under line variations, load variations, and different component variations is performed.

PWM Controller of Power Factor Correction Circuit to Improve Efficiency for Wide Load Range (넓은 부하범위에서 고효율 특성을 갖는 역율개선회로의 PWM 제어기)

  • Son, Min-soo;Kim, Hong-jung;Park, Gwi-chul;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.75-76
    • /
    • 2016
  • This paper proposes a power factor correction circuit with a high efficiency over a wide load range characteristics for a communication power supply. And the characteristic verification is applied to produce a design of prototype. Power factor correction circuit can reduce conduction losses by applying Bridgeless Boost Converter for efficiency. Over a wide load range to maintain the efficient, the control method of a PWM controller is divided by two sections according to the load area. In the low-load region, it was reduced switching losses by applying the critical conduction mode control method. On the other hand, in the heavy-load area, the hysteresis current control method is used to maintain the high efficiency over a wide load range by limiting the peak noise of the inductor.

  • PDF

Development of Compact High Voltage Driving Amplifier for Piezo Ceramic Actuator (압전 세라믹 액추에이터를 위한 소형 고전압 구동 증폭기 개발)

  • Kim, Soon-Cheol;Han, Jung-Ho;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5409-5415
    • /
    • 2012
  • Piezo ceramic actuator is used for various industrial products such as spray, dispenser, and valve control etc. Since the deflection of the piezo ceramic element depends on the applied voltage, it is required a power amplifier with high voltage supply for driving the piezo ceramic actuators. In this paper, we develop a simple H-bridge type power amplifier and a compact flyback type high voltage switching mode power supply for piezo ceramic actuators. It is easy to adjust the amount of energy input to piezo ceramic actuator by pulse-width-modulation with H-bridge type power amplifier.

AC/DC Converter Suitable for a Pulsed Mode Switching DC Power Supply (펄스모드 스위칭 직류전원 장치에 적합한 AC/DC 켄버터)

  • Moon S. H.;Nho E. C.;Kim I. D.;Kim H. G.;Chun T. W.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.378-381
    • /
    • 2002
  • This paper describes a novel multilevel ad/dc power converter suitable for the protection of frequent output short-circuit. The output dc power of the proposed converter can be disconnected from the load within several hundred microseconds at the instant of short-circuit fault. The rising time of the dc load voltage is as small as several hundred microseconds, and there is no overshoot of the do voltage because the dc output capacitors keep undischarged state. Analysis and simulations are carried out to investigate the operation and usefulness of the proposed scheme.

  • PDF

Improvement of Temperature Characteristics in Ceramic-packaged Shunt Resistors (세라믹 패키지를 이용한 shunt 저항의 온도 특성 개선)

  • Kang, Doo-Won;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.57-60
    • /
    • 2015
  • Electric power in large devices is controlled by digital circuits, such as switching mode power supply. This kind of power circuits require accurate current sensor for power distribution. We studied characteristics of shunt resistor, which has many advantages for commercial application compared to Hall-effect current sensor. We applied ceramic package to the shunt resistor. Ceramic package has good thermal conductivity compared to plastic package, and this point is important for space requirement in Printed Circuit Board (PCB). Another advantage of the ceramic package is that surface mount technology (SMT) can be used for production. Our experimental results showed that the ceramic packaged resistor showed about 50% lower temperature than the plastic packaged one. Burning point and frequency characteristics are also discussed.

Design of a High-Voltage Piezoelectric Converter for Airbag Ignition Modules

  • Xiao, Hongbing;Du, Yu;Bai, Chunyu;Guo, Zerong;Yen, Kang K.
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.183-193
    • /
    • 2014
  • Due to the requirements for high reliability and accuracy, safety issues for airbag ignition systems need to be studied. In this paper, a high-voltage piezoelectric converter is designed to improve these requirements in airbag ignition systems. The proposed converter includes an inverter drive circuit, a Rosen piezoelectric transformer (PZT), an output circuit and a feedback control circuit. The key components of the high-voltage piezoelectric transformer are analyzed in detail. In addition, the proposed converter system is simulated and implemented for testing. The experimental results show that when the power supply is turned on, the charging time is less than 800ms. Furthermore, the output voltage of this converter can be kept between 2.9kV and 3.1kV, under high-efficiency constant current charging mode and zero-voltage switching conditions.

A Contact-less Power Supply using LLC resonant converter for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 LLC 직렬공진컨버터 적용 무접점 전원장치)

  • Lee, H.K.;Lee, G.S.;Kang, S.I.;Kong, Y.S.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.347-350
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer. Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without any auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transfonner are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

  • PDF