• Title/Summary/Keyword: Switching control system

Search Result 1,428, Processing Time 0.027 seconds

Traffic carring capacity of the ISDN switching system (ISDN 교환기의 트래픽 용량 분석)

  • 이강원
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.107-125
    • /
    • 1993
  • Modern telecommunication switching systems are SPC(Stored Program Control) machines handling voice, data and other kinds of traffic, in an environment which tends to be fully digital switching and transmission. The throughput of such systems is determined by the real time capacity of its centralized or distributed control processors and by the traffic capacity of the switching network. Designers must verify the traffic and call processing capacity of the switching system and check its performance under traffic load before it is put into service. Verification of traffic and call processing capacity of switching systems is one of the problems treated by teletraffic studies ; teletraffic studies are based on stochastic process, queueing theory, simulations and other quantitative methods of decision making. This study suggests the general methodology to evaluate the throughput and performance of the ISDN switching system. TDX-10 ISDN switching system are employed to give illustrative examples of the methodologies discussed in this study.

  • PDF

Traffic Capacity Analysis of the Digital Switching System (전전자 교환기의 트래픽 용량 분석)

  • Lee, Gang-Won;Park, Yeon-Gi;Seo, Jae-Jun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-34
    • /
    • 1987
  • Modern telecommunication switching systems are SPC (Stored Program Control) machines handling voice, data and other kinds of traffic, in an environment which tends to be fully digital switching and transmission. The throughput of such systems is determined by the real time capacity of its centralized or distributed control processors and by the traffic capacity of the switching network. Designers must verify the traffic and call processing capacity of the switching system and check its performance under traffic load before it is put into service. Verification of traffic and call processing capacity of switching systems is one of the problems treated by teletraffic studies; teletraffic studies are based on stochastic process, queueing theory, simulations and other quantitative methods of decision making. This paper reviews the general methodologies to evaluate the throughput and performance of the digital switching system. TDX-10, which is a fully digital switching system under development in ETRI, is employed to give illustrative examples of the methodologies discussed in this paper.

  • PDF

Computational solution for the problem of a stochastic optimal switching control

  • Choi, Won-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.155-159
    • /
    • 1993
  • In this paper, we consider the problem of a stochastic optimal switching control, which can be applied to the control of a system with uncertain demand such as a control problem of a power plant. The dynamic programming method is applied for the formulation of the optimal control problem. We solve the system of Quasi-Variational Inequalities(QVI) using an algoritlim which involves the finite difference approximation and contraction mapping method. A mathematical example of the optimal switching control is constructed. The actual performance of the algorithm is also tested through the solution of the constructed example.

  • PDF

A Study on the Conversion Time to Minimize of Transient Response during Inter-Conversion between Control Laws (제어법칙 간 상호 전환 시 과도응답 최소화를 위한 전환시간에 관한 연구)

  • Kim, Chongsup
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 2015
  • The inter-conversion between different control laws in flight has a lot of risk. The SWM(Switching Mechanism) including logic and stand-by mode is designed to analyze the transient response of aircraft during inter-conversion between different control laws, based on the in-house software for non-real-time and real-time simulation. The SWM applies the fader logic of TFS(Transient Free Switch) to minimize the transient response of an aircraft during the inter-conversion, and applies the reset '0' type of the stand-by mode to prevent surface saturation due to integrator effect in the disengaged flight control law. The transition time is also important to minimize the objectionable transient response in the inter-conversion, as well as the transition control law design. This paper addresses the results of non-real-time simulation for the characteristics of transient response to different transition time to select the adequate transient time, and the real-time pilot evaluation, using SSWM(Software Switching Mechanism) and HSWM(Hardware Switching Mechanism), which is met for Level 1 flying qualities and assures safety of flight.

Newton Method MPPT Control and Soft Switching Converter Simulation for Improving the Efficiency of PV System (태양광발전 시스템의 효율 개선을 위한 Newton Method MPPT제어 및 소프트 스위칭 컨버터 시뮬레이션)

  • Jang, In-Hyeok;Lee, Kang-Yeon;Choi, Youn-Ok;Cho, Geum-Bae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.246-252
    • /
    • 2011
  • In this paper proposes the soft-switching boost converter and MPPT control for improving the efficiency of PV system. The proposed converter designed H-bridge auxiliary resonant circuit. By this circuit, all of the switching devices perform the soft switching under the zero voltage and zero current condition. Therefore the periodic switching losses can be decreased at turn on, off. The soft switching boost converter designs for 1.5[kW] solar module of the power conversion. Thus, this soft switching boost converter is simulated by MATLAB simulation using Newton-Method algorithm. As a result, Proposed Soft Switching Converter compared to a typical boost converter switching loss was reduced about 61%. And the overall system efficiency was verified to increase about 3.3%.

An LMI-based Decentralized Sliding Mode Control Design Method for Large Scale Systems (대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.651-655
    • /
    • 2005
  • In this paper, we consider the problem of designing decentralized sliding mode control laws far a class of large scale systems with mismatched uncertainties. We derive a sufficient condition far the existence of a linear switching surface in terms of a linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given LMI existence conditions. We also give an algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

Overload Detection in Switching Systems using FUzzy Rrules (퍼지 규칙 생성에 의한 교환 시스템의 과부하 상태 검출)

  • 주성순;이정훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.79-88
    • /
    • 1997
  • New technologies, systems, and services in telecommunication have increased the need for an efficient and robust control mechanism to protect switching systems from overload. To achieve proper control, it is necessary to find a set of parameters that can describe the system. However, it is difficult to find types of data that can form a suitable basis for control. In this paper, we categorize the load status of a switching system into three classes (i.e., normal state, pre-overload state, and overload state) and formulate the overload detection as a classification problem. We find the relationships between the load classes and a set of monitored switching system parameters by applying a fuzzy rule-generation method. The rules are automatically generated from training data. Simulation results involving a switching system is given.

  • PDF

Mode Switching Smooth Control of Transient Process of Grid-Connected 400 Hz Solid-State Power Supply System

  • Zhu, Jun-Jie;Nie, Zi-Ling;Zhang, Yin-Feng;Han, Yi
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2327-2337
    • /
    • 2016
  • The mode-switching control of transient process is important to grid-connected 400 Hz solid-state power supply systems. Therefore, this paper analyzes the principle of on-grid and islanding operation of the system with or without local loads in the grid-connected process and provides a theoretical study of the effect of different switching sequences on the mode-switching transient process. The conclusion is that the mode switch (MS) must be turned on before the solid-state switch (STS) in the on-grid process and that STS must be turned off before the MS in the off-grid process. A strategy of mode-switching smooth control for transient process of the system is proposed, including its concrete steps. The strategy utilizes the average distribution of peak currents and the smooth adjustment of peak currents and phases to achieve a no-shock grid connection. The simulation and experimental results show that the theoretical analysis is correct and that the method is effective.

A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System (잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계)

  • 조영완
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.

Development of Switching System for Flight Control Law (비행제어법칙 전환시스템 개발)

  • Ahn, Jong-Min;Im, Sang-Soo;Kwon, Jong-Kwang;Choi, Sup;Lee, Yong-Pyo;Ko, Joon-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.712-718
    • /
    • 2008
  • This paper deals with a development of flight control law switching system which can be used for flight test of the research control law by switching control law during flight. Through this research program, fader logic and integrator stabilization design has been introduced to minimize the transient response of aircraft caused by flight control law switching and to prevent the divergence of the integrator included in the control law in standby mode. MIL-STD-1553B communication was applied to transfer the data between the two control laws. This paper introduce the control law switching system architecture and major design concept and include the system verification and validation result performed on the flying quality simulator of the advanced trainer.