• Title/Summary/Keyword: Switching characteristics

Search Result 1,837, Processing Time 0.031 seconds

A Study on the Improvement of the IM Speed Control Characteristics with Load Torque Variation (부하 변동에 대한 유도 전동기의 속도 제어 특성에 관한 연구)

  • 강문호;김남정;유기윤;박귀태;민경일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1075-1083
    • /
    • 1994
  • In this paper, a study on the improvement of the IM speed response against load torque variation is presented. A VSCS(Variable Structure Control System) is proposed which gives the desired robustness against load torque variation using a new kind of time-varing switching plane. In order to eliminate the reaching phase of the states from one switching plane to another during variation, the switching plane is varied continuously. To verify the high dynamic performance of the proposed VSCS, simulation and experimental results are presented.

Electrical Switching Effects in the Sintered $Fe_2O_3$-$Bi_2O_3$ (II) ($Fe_2O_3$-$Bi_2O_3$ 소결체의 전기적 Switching 특성(II))

  • 정환재
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.1
    • /
    • pp.36-39
    • /
    • 1980
  • Studies have been perfor mad on the normalization of V-I characteristics, the dependence of current runaway on the applied step voltage and the analysis of the current channet in the sintered 5Fe$_2$O$_3$-5Bi$_2$O$_3$. From the measurement of snitching Properties of the sintered 5Fe$_2$O$_3$-5Bi$_2$O$_3$, it is exe]twined that the electrical switching mechanism is that of thermal ionic breakolown.

  • PDF

Design of the High Frequency Resonant Inverter for Corona Surface Processes

  • Choi, Chul-Yong;Lee, Dae-Sik
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • A algorithm for control and performance of a pulse-density-modulated (PDM) series-resonant voltage source inverter developed for corona-dischange precesses is presented. The PDM inverter produces either a square-wave ac-voltage state or a zero-voltage state at its ac terminals to control the average output voltage under constant dc voltage and operating frequency. Moreover it can achieve zero-current-switching (ZCS) and zero-voltage-switching (ZVS) in all the operating condition for a reduction of switching lost. Even though the corona discharge load with a strong nonlinear characteristics, new high frequency resonant inverter is shown the wide range power control from 5% to 100%.

  • PDF

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Integrated Bidirectional Three-Port DC-DC Converter with Ripple-Free Input Current and Soft Switching

  • KhademiAstaneh, Parastou;Javidan, Javad;Valipour, Khalil;Akbarimajd, Adel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1293-1302
    • /
    • 2018
  • Multiport power converters have recently become popular to researchers and engineers. However, more improvements are required in terms of their soft-switching operation, bidirectional operation, and integration. In this study, a bidirectional three-port three-switch DC-DC converter is proposed. The converter contains a low-current ripple port and ripple-free current port. Through the integrated structure, utilization of a coupled inductor, and a new switching strategy, the aforementioned specifications are achieved. A modified switching strategy is also utilized in the converter, which has resulted in the bidirectional operation of the converter between ports. Finally, a comprehensive analysis is presented, and the converter characteristics are validated by experimental results.

Single-Switch ZVZCS Quasi-Resonant CLL Isolated DC-DC Converter for 32'' LCD TV

  • Ryu, Seung-Hee;Ahn, Jung-Hoon;Cho, Kwang-Seung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1646-1654
    • /
    • 2015
  • In this paper, a single-switch ZVZCS quasi-resonant CLL isolated DC-DC converter for driving a low-power (less than 100 W) 32'' LED backlighting liquid crystal display television (LCD TV) is proposed. The proposed converter exhibits both forward and flyback operational characteristics. All semiconductors are activated and deactivated under the soft switching conditions during the switching transition without additional active devices. The switching frequency varies less than about 10 kHz for load variations, leading to minimizing the efficiency reduction under light load. Furthermore, the low di/dt and dv/dt by soft switching enhance the electromagnetic interference (EMI) performance above 1 MHz. A theoretical analysis is described in detail, and a 72-W prototype converter verifies the validity of the analysis.

A ZCT PWM Boost Converter using parallel MOSFET switch (병렬 MOSFET 스위치를 이용한 ZCT PWM Boost Converter)

  • Kim Tea-Woo;Hur Do-Gil;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.759-762
    • /
    • 2002
  • A ZCT(Zero Current Transition) PWM(Pulse-Width-Modulation) boost converter using parallel MOSFET switch is proposed in this paper. The IGBT(main switch) of the proposed converter is always turned on with zero current switching and turned off with zero current/zero voltage switching. The MOSFET(auxiliary switch) is also operates with soft switching condition. In addtion to, the proposed converter eliminates the reverse recovery current of the freewheeling diode by adding the resonant inductor, Lr, in series with the main switch. Therefore, the turn on/turn off switching losses of switches are minimized and the conduction losses by using IGBT switch are reduced. In addition to, using parallel MOSFET switch overcomes the switching frequency limitation occurred by current tail. As mentioned above, the characteristics are verified through experimental results.

  • PDF

The considerations of a High Frequency DC-AC Inverter in a Short Range Wireless Power Transfer Applications (근거리 무선전력전송용 고주파 DC-AC 인버터 회로 고찰)

  • Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.37-38
    • /
    • 2010
  • For MHz-class high frequency inverter in wireless power transfer applications, the voltage/current surges can be occurred in power stage when driving on the inverter. And also, the high-frequency oscillations can be produced at a high switching frequency due to the parasitic elements. The voltage and current stresses of the switching devices lead to the switching losses. The efficiency of the high frequency inverter will be reduced. And the inverter circuit with the sudden voltage and current fluctuations also generates the noise such as the EMI. Zero voltage, zero current switching technique can be used to reduce the switching loss and the noise. The high power density and high efficiency can be obtained. In this paper, the high-frequency inverter for short-range wireless power transfer applications was discussed. The feasible inverter circuit is analyzed in the circuit operating characteristics and the results are verified by the simulation.

  • PDF

Effect of Metallic Tungsten Concentration on Resistance Switching Behavior of Sputtered W-doped NbOx Films

  • Lee, Gyu-Min;Kim, Jong-Gi;Na, Hui-Do;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.288-288
    • /
    • 2012
  • In this study, we investigated that the resistance switching characteristics of W-doped NbOx films with increasing W doping concentration. The W-doped NbOx based ReRAM devices with a TiN/W-doped NbOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 50 nm thick W-doped NbOx films were deposited by reactive dc magnetron co-sputtering at $400^{\circ}C$ and oxygen partial pressure of 35%. Micro-structure of W-doped NbOx films and atomic concentration were investigated by XRD, TEM and XPS, respectively. The W-doped NbOx films showed set/reset resistance switching behavior at various W doping concentrations. The process voltage of set/reset is decreased and whereas the initial current level is increased with increasing W doping concentration in NbOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of metallic tungsten of oxygen of W-doped NbOx.

  • PDF

Switching Characteristics of Amorphous GeSe TFT for Switching Device Application

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jo, Won-Ju;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.403-404
    • /
    • 2012
  • We fabricated TFT devices with the GeSe channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is high. Based on the experiments, we draw the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF