• 제목/요약/키워드: Switching Speed

검색결과 1,042건 처리시간 0.026초

Linerly Graded Encoder for High Resolution Angle Control of SRM Drive

  • Lee, Sang-Hun;Lim, Heon-Ho;Park, Sung-Jun;Ahn, Jin-Woo;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권4호
    • /
    • pp.185-192
    • /
    • 2001
  • In SRM drive, the ON·OFF angles of each phase switch should be accurately controlled in order to control the torque and speed stably. The accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor, that are used to provide the information of the rotor position and to control the SRM power circuit, respectively. However, as the speed increases, the amount of the switching angle deviation from the preset values is also increased. Therefore, the low cost encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper, As a result, a stable high speed SRM drive can be achieved by the high resolution switching angle control and it is verified from the experiments that the proposed encoder the logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

MPLS망을 적용한 IMT2000 시스템에서의 패킷 데이터 처리 절차 (IMT-2000 Packet Data Processing Method utilizing MPLS)

  • 유재필;김기천;이윤주
    • 한국정보처리학회논문지
    • /
    • 제6권11S호
    • /
    • pp.3190-3198
    • /
    • 1999
  • Because of the rapid growth of the mobile communication, the need for the mobile internet access has grown up as well. since the current mobile communication network, however, is optimized for a voice communication system, which exclusively occupies a channel for a given time, it is not suitable for variable rate packet data. In order to support the mobile internet access, it is essential do design a reasonable packet switching network which supports the mobility. Since mobile packet network has longer latency, high speed switching and QoS are required to meet the user's requirements. In this paper, we suggest an resonable way to construct a network and its operation procedures utilizing GPRS(General Packet Radio Service) network and MPLS(Multi Protocol Label Switching) to provide a high speed switching and QoS mobile internet access. GPRS is used as a network which supports the mobility and MPLS guarantees the QoS and high speed IP protocol transmission based on the ATM switching technology.

  • PDF

CoolSiCTM SiC MOSFET Technology, Device and Application

  • Ma, Kwokwai
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.577-595
    • /
    • 2017
  • ${\bullet}$ Silicon Carbide (SiC) had excellent material properties as the base material for next generation of power semiconductor. In developing SiC MOSFET, gate oxide reliability issues had to be first overcome before commercial application. Besides, a high and stable gate-source voltage threshold $V_{GS(th)}$ is also an important parameter for operation robustness. SiC MOSFET with such characteristics can directly use existing high-speed IGBT gate driver IC's. ${\bullet}$ The linear voltage drop characteristics of SiC MOSFET will bring lower conduction loss averaged over full AC cycle compared to similarly rate IGBT. Lower switching loss enable higher switching frequency. Using package with auxiliary source terminal for gate driving will further reduce switching losses. Dynamic characteristics can fully controlled by simple gate resistors. ${\bullet}$ The low switching losses characteristics of SiC MOSFET can substantially reduce power losses in high switching frequency operation. Significant power loss reduction is also possible even at low switching frequency and low switching speed. in T-type 3-level topology, SiC MOSFET solution enable three times higher switching freqeuncy at same efficiency.

  • PDF

A Sensorless PMDC Motor Speed Controller with a Logical Overcurrent Protection

  • Guerreiro, M.G.;Foito, D.;Cordeiro, A.
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.381-389
    • /
    • 2013
  • A method to control the speed or the torque of a permanent-magnet direct current motor is presented. The rotor speed and the external torque estimation are simultaneously provided by appropriate observers. The sensorless control scheme is based on current measurement and switching states of power devices. The observers performances are dependent on the accurate machine parameters knowledge. Sliding mode control approach was adopted for drive control, providing the suitable switching states to the chopper power devices. Despite the predictable chattering, a convenient first order switching function was considered enough to define the sliding surface and to correspond with the desired control specifications and drive performance. The experimental implementation was supported on a single dsPIC and the controller includes a logic overcurrent protection.

Influence of Parasitic Parameters on Switching Characteristics and Layout Design Considerations of SiC MOSFETs

  • Qin, Haihong;Ma, Ceyu;Zhu, Ziyue;Yan, Yangguang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1255-1267
    • /
    • 2018
  • Parasitic parameters have a larger influence on Silicon Carbide (SiC) devices with an increase of the switching frequency. This limits full utilization of the performance advantages of the low switching losses in high frequency applications. By combining a theoretical analysis with a experimental parametric study, a mathematic model considering the parasitic inductance and parasitic capacitance is developed for the basic switching circuit of a SiC MOSFET. The main factors affecting the switching characteristics are explored. Moreover, a fast-switching double pulse test platform is built to measure the individual influences of each parasitic parameters on the switching characteristics. In addition, guidelines are revealed through experimental results. Due to the limits of the practical layout in the high-speed switching circuits of SiC devices, the matching relations are developed and an optimized layout design method for the parasitic inductance is proposed under a constant length of the switching loop. The design criteria are concluded based on the impact of the parasitic parameters. This provides guidelines for layout design considerations of SiC-based high-speed switching circuits.

Digitally Current Controlled DC-DC Switching Converters Using an Adjacent Cycle Sampling Strategy

  • Wei, Tingcun;Wang, Yulin;Li, Feng;Chen, Nan;Wang, Jia
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.227-237
    • /
    • 2016
  • A novel digital current control strategy for digitally controlled DC-DC switching converters, referred to as Adjacent Cycle Sampling (ACS), is proposed in this paper. For the ACS current control strategy, the available time interval from sampling the current to updating the duty ratio, is approximately one switching cycle. In addition, it is independent of the duty ratio. As a result, the contradiction between the processing speed of the hardware and the transient response speed can be effectively relaxed by using the ACS current control strategy. For digitally controlled buck DC-DC switching converters with trailing-edge modulation, digital current control algorithms with the ACS control strategy are derived for three different control objectives. These objectives are the valley, average, and peak inductor currents. In addition, the sub-harmonic oscillations of the above current control algorithms are analyzed and eliminated by using the digital slope compensation (DSC) method. Experimental results based on a FPGA are given, which verify the theoretical analysis results very well. It can be concluded that the ACS control has a faster transient response speed than the time delay control, and that its requirements for hardware processing speed can be reduced when compared with the deadbeat control. Therefore, it promises to be one of the key technologies for high-frequency DC-DC switching converters.

오차.되먹임 비선형 보상기를 이용한 SR 모터의 견실한 속도 제어 (A Robust Speed Control of SR Motor Using Error.Feedback Nonlinear Compensator)

  • 이태규;허욱렬
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.318-323
    • /
    • 1996
  • The speed of SR(Switched Reluctance) motor can be controlled by switching angle. However, since the relation between speed and switching is nonlinear, it is difficult for simple adjustment schemes to achieve the desired performances. In this paper, an error.feedback nonlinear compensator with robustness is proposed for improving the performances of the switching angle controlled SR motor. The proposed controller consists of integral type control and relay type control. The integral type controller which operates regulation, is derived by the steady.state I/O(input/output) map and the relay type controller which works tracking, is designed by Lyapunov stability theory. The validities of the proposed controller are confirmed with the experimental results.

  • PDF

Switching Angle Control of a High Speed Switched Reluctance Motor using an FPGA Circuit

  • Park, Changhwan;Kim, Vongdae;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.152.1-152
    • /
    • 2001
  • This paper presents a high performance and cost effective way by using an FPGA circuit to implement torque controller so that the SRM can operate at high speed. In order to increase the operating speed, we need to implement both the torque and the current controllers by using an FPGA. However, it is difficult to implement all of the torque controller in the FPGA. Moreover, implementation of a time critical part is sufficient for improving the performance. One of the time critical part is the switching angle control. In this study, torque controller which calculate the switching on and commutation angles is implemented in PC because these angle are a function of rotor velocity which is varied slowly, and switching angle controller ...

  • PDF

P형 우물 영역에 따른 4H-SiC DMOSFETs의 스위칭 특성 분석 (Effect of P-Base Region on the Transient Characteristics of 4H-SiC DMOSFETs)

  • 강민석;안정준;성범식;정지환;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.352-352
    • /
    • 2010
  • Silicon Carbide (SiC) power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this paper, we report the effect of the P-base doping concentration ($N_{PBASE}$) on the transient characteristics of 4H-SiC DMOSFETs. By reducing $N_{PBASE}$, switching time also decreases, primarily due to the lowered channel resistance. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimization of superior switching performance.

  • PDF

Switching Transient Shaping by Application of a Magnetically Coupled PCB Damping Layer

  • Hartmann, Michael;Musing, Andreas;Kolar, Johann W.
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.308-319
    • /
    • 2009
  • An increasing number of power electronic applications require high power density. Therefore, the switching frequency and switching speed have to be raised considerably. However, the very fast switching transients induce a strong voltage and current ringing. In this work, a novel damping concept is introduced where the parasitic wiring inductances are advantageously magnetically coupled with a damping layer for attenuating these unwanted oscillations. The proposed damping layer can be implemented using standard materials and printed circuit board manufacturing processes. The system behavior is analyzed in detail and design guidelines for a damping layer with optimized RC termination network are given. The effectiveness of the introduced layer is determined by layout parasitics which are calculated by application of the Partial Element Equivalent Circuit (PEEC) simulation method. Finally, simulations and measurements on a laboratory prototype demonstrate the good performance of the proposed damping approach.