• Title/Summary/Keyword: Switching Operation

Search Result 1,459, Processing Time 0.023 seconds

Self-Feeder Driver for Voltage Balance in Series-Connected IGBT Associations

  • Guerrero-Guerrero, A.F.;Ustariz-Farfan, A.J.;Tacca, H.E.;Cano-Plata, E.A.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.68-78
    • /
    • 2019
  • The emergence of high voltage conversion applications has resulted in a trend of using semiconductor device series associations. Series associations allow for operation at blocking voltages, which are higher than the nominal voltage for each of the semiconductor devices. The main challenge with these topologies is finding a way to guarantee the voltage balance between devices in both blocking and switching transients. Most of the methods that have been proposed to mitigate static and dynamic voltage unbalances result in increased losses within the device. This paper introduces a new series stack topology, where the voltage unbalances are reduced. This in turn, mitigates the switching losses. The proposed topology consists of a circuit that ensures the soft switching of each device, and one auxiliary circuit that allows for switching energy recovery. The principle for the topology operation is presented and experimental tests are performed for two modules. The topology performs excellently for switching transients on each of the devices. The voltage static unbalances were limited to 10%, while the activation/deactivation delay introduced by the lower module IGBT driver takes place in the dynamic unbalances. Thus, the switching losses are reduced by 40%, when compared to hard switching configurations.

A Study on Soft Switching PWM Boost Converter using ZVT Technique (ZVT 기술을 이용한 soft switching DC-DC Boost 컨버터에 관한 연구)

  • 김춘삼
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.141-144
    • /
    • 2000
  • Recently DC-DC converters significantly increase the total losses as rising switching frequency. Traditional soft switching technique for reducing switching losses even increase voltage/current stress of switch. In this paper Resonant circuit for soft switching is connected in parallel with power stage and only operates just before turn-on of the main operates just before turn-on of the main switch, Therefore This doesn't affect the total circuit operation. ZNT-PWM converter designed with 170-260V input 4--V 5A output and 100kHz switching frequency is tested respectively with 500W. 1kW, 1.5kW, and 2kW loads.

  • PDF

Analysis of Resonant Characteristics in Asymmetrical Soft Switching Half Bridge Converter (비대칭 소프트 스위칭 하프 브리지 컨버터의 공진 특성 분석)

  • Yeon, Jae-Eul;Ahn, Jung-Rok;Jang, Do-Hyun;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1100-1102
    • /
    • 2002
  • In this paper, resonant characteri-sties of the asymmetrical soft switching half bridge converter is analyzed. The operation principle for proposed converter is explained in steady-state and its operation characteristics by switching frequency is presented with experimental result. Experimental results carried out on a system prototype are included in this paper.

  • PDF

A Novel Concept of Phase Swapping for Multiple Enhanced Speed Operations of a PM machine using Winding Switching

  • Atiq, Shahid;Hussain, Asif;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.262-271
    • /
    • 2017
  • This paper presents a novel concept of phase swapping to associate multiple flux weakening ranges to a non-salient PM machine without altering any hardware of the machine. The proposed concept enables a dual three-phase machine to be operated with different displacement angles between the two three-phase windings. Hence, different flux weakening ranges using winding switching can be accomplished by applying this concept. It was also demonstrated that the proposed concept can be utilized for the discrete step as well as continuous operation of the machines. Any application requiring a wide speed range operation of up to thirteen times the base speed can benefit from this proposed concept. Analytical, simulation, and experimental results are provided to validate the effectiveness of the proposed concept.

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.

Method for Exclusive-OR Operation for Switching Equations Based on Tabular Algebra (테이블 대수형 스위칭 함수를 위한 배타적 논리합 연산 방법)

  • 정화자;정기연
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.862-867
    • /
    • 1995
  • In this paper a method to perform Exclusive-OR operation between two tabular type Boolean expressions is presented. The proposed method allows to solve the switching equations and the simultaneous equations in a rather direct manner, compared with Unger's method.

  • PDF

Non-Dissipative Snubber for High Switching Frequency and High Power Density Step-Down Converters (고속 스위칭 및 고 전력밀도 강압형 컨버터를 위한 무손실 스너버)

  • Shin, Jung-Min;Park, Chul-Wan;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a non-dissipative snubber for reducing the switching losses in the step down converter is proposed. The conventional step down converter, e.g., buck converter, suffers from serious switching losses and consequentially heat generation because of its hard switching. Thus, it is unsuitable for high switching frequency operation. Reduction of the reactive components' size, such as an output inductor and capacitor, is difficult. The proposed snubber can slow down the increasing current slopes and switch voltage at turn-on and turn-off transients, thereby significantly reducing the switching loses. Additionally, the slowly increasing current during switch turn-on transition, can effectively solve the output rectifier diode reverse recovery problem. Therefore, the proposed non-dissipative snubber not only leads to the efficiency of converter operation at high switching frequency but also reduces the reactive components size in proportion to the switching frequency. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 150 W, 1 MHz prototype are presented.

Control Method of Modular Multilevel Converter to Reduce Switching Losses (스위칭 손실을 줄이기 위한 모듈형 멀티레벨 컨버터의 제어 방법)

  • Park, So-Young;Kim, Jae-Chang;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.476-483
    • /
    • 2017
  • In this paper, a voltage-based model predictive control (MPC) scheme for a modular multilevel converter is used to reduce switching loss. The proposed method calculates an offset voltage that clamps the switching operation of submodules in which the current greatly flows at every sampling period by using the reference phase voltage and the reference phase current. To use the offset voltage, the proposed method converts the current-based MPC to the voltage-based MPC. The proposed voltage-based MPC then generates a new reference pole voltage that clamps the switching of submodules by applying the calculated offset voltage to the phase voltage. Therefore, the proposed method can reduce the switching loss by stopping the switching operation of submodules in which the current greatly flows. The switching loss reduction effect of the proposed method is verified by comparing its loss data with those of the conventional MPC method.

A Novel Soft-Switching Full-Bridge PWM Converter with an Energy Recovery Circuit

  • Lee, Dong-Young;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.809-821
    • /
    • 2009
  • This paper proposes a new phase-shift full-bridge DC-DC converter by applying energy recovery circuits to a conventional full-bridge DC-DC converter in plasma display panel applications. The converter can achieve soft-switching in main-switches by an extra auxiliary resonant network even with the wide operating condition of both output load and input voltage. The un-coupled design guidelines to the main bridge-leg component parameters for soft-switching operation contribute to conduction loss reduction in the transformer primary side leading to efficiency improvement. The auxiliary switches in the resonant network also operate in zero-current switching. This paper analyzes the operation modes of the proposed scheme and presents the key design guidelines through steady state analysis. Also, the paper verifies the validity of the circuits by hardware experiments with a 1kW DC/DC converter prototype.

Paralling of SRM Drive System using Novel Switching Pattern (새로운 스위칭 패턴을 사용한 SRM의 병렬권선 운전)

  • Kim Tae-Hyung;Lee Dong-Hee;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.918-921
    • /
    • 2004
  • In a motor drive, the current rating is directly related to the rating of a switching device, and the parallel switching operation for a cost reduction is the alternatives because it has the smaller current rating through current division. There are many investigations for the parallel switching operations to equaling the current division. However it remains many problems for practical usage. This paper proposes a new parallel operation which uses a parallel phase winding to remove the traditional effect of switching device such as saturation voltage according to the division of current. The proposed strategy is verified by theoretical and experimental results.

  • PDF