• 제목/요약/키워드: Switching Module

검색결과 366건 처리시간 0.026초

저 전력 아키텍처를 위한 상위 레벨 데이터 패스 할당 알고리즘 (A High-Level Data Path Allocation Algorithm for Low Power Architecture)

  • 인치호
    • 전기전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.166-171
    • /
    • 2003
  • 본 논문은 상위 레벨 합성에서의 레지스터와 자원 할당 과정의 스위치 동작 최소화를 통한 저 전력 데이터 패스 할당 알고리즘을 제안한다. 제안하는 알고리즘은 스케줄링된 CDFG를 입력으로 할당 과정에서 전력 최소화를 수행한다. 알고리즘은 레지스터 할당과 자원 할당 과정을 나누어 수행한다. 레지스터 할당 알고리즘은 기능 장치내의 불필요한 스위칭 동작을 제거하고 멀티플렉서의 수를 최소화한다. 자원 할당 과정은 스위칭 동작을 최소화할 수 있는 연산자의 순서를 선택한다. 본 논문에서 제안하는 알고리즘과 genesis-lp 상위 레벨 합성시스템을 벤치마크를 이용한 비교 실험결과 평균 15.3%의 전력 감소효과가 있다.

  • PDF

모듈러 기술에 기반을 둔 고효율 스위칭함수 구성에 관한 연구 (A Study on Constructing the High Efficiency Switching Function based on the Modular Techniques)

  • 박춘명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.398-399
    • /
    • 2019
  • 본 논문에서는 최근에 디지털논리시스템의 회로 구현시에 적용되기 시작한 분할설계기법의 한가지 방법을 제안하였다. 기존의 디지털논리회로설계기법은 적용되는 개별소자를 어떻게 효과적이며 효율적으로 이용하느냐 하는 것이 큰 목적이었으나, 최근의 전자공학의 발달과 회로의 집적도가 높아짐에 따라서 디지털논리설계기법은 각각의 모듈을 구성하고 있는 소자들의 개별소자를 사용하는 것보다는 복잡하더라도 좀 더 경제적이고 다기능의 분할설계기법이 요구되고 있다. 이러한 내용을 근간으로 본 논문에서는 효과적인 분할기법을 이용한 스위칭함수구성의 한가지 방법을 제안하였다.

  • PDF

시분할 하이브리드 WDM 광스위치 구조 (Time-division hybrid WDM photonic switch architecture)

  • 김기태;엄진섭;김우찬;신서용;정홍식
    • 전자공학회논문지D
    • /
    • 제34D권5호
    • /
    • pp.52-60
    • /
    • 1997
  • Photonic switching systems with throughput above Tbit/s are reuried to transport vast amounts of information for the coming B-ISDN. In this paper, we proposed a new time-division hybrid WDM photonic swithc architecture, the proposed basic switch module has simple configuratin consisted of frequency routers for wavelength division and cell coders and star couplers for time division. Through the comparison with other sysems in field of switching capacity, hardware complexity and cost effect of implemetnation, we proved that the proposed system is suitable for large-capacity photonic switching system.

  • PDF

전철용 IGBT 모듈 설계연구 (Traction IGBT Modules Design Issues and Precautions)

  • 데버랜전고팔;노영환;김윤호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1853-1859
    • /
    • 2008
  • IGBT modules are designed for low loss, rugged for all environments and user friendly. Low on state saturation voltage with high switching speed is the primary concerns. In this paper selection of IGBT, module ratings and characteristics are discussed. The IGBT design topic of protection against over voltage and over current are covered. Emphasis on turn off switching, short circuit switching and necessary precautions are dealt. Selection of IGBT device, gate drive power, and its lay out considerations are covered in detail.

  • PDF

6.6 kW On-Vehicle Charger with a Hybrid Si IGBTs and SiC SBDs Based Booster Power Module

  • Han, Timothy Junghee;Preston, Jared;Ouwerkerk, David
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.584-591
    • /
    • 2013
  • In this paper, a hybrid booster power module with Si IGBT and Silicon Carbide (SiC) Schottky Barrier Diode (SBDs) is presented. The switching characteristics of the hybrid booster module are compared with commercial Silicon IGBT/Si PIN diode based modules. We applied the booster power module into a non-isolated on board vehicle charger with a simple buck-booster topology. The performances of the on-vehicle charger are analyzed and measured with different power modules. The test data is measured in the same system, at the same points of operation, using the conventional Si and hybrid Si/SiC power modules. The measured power conversion efficiency of the proposed on-vehicle charger is 96.4 % with the SiC SBD based hybrid booster module. The conversion efficiency gain of 1.4 % is realizable by replacing the Si-based booster module with the Si IGBT/SiC SBD hybrid boost module in the 6.6 kW on-vehicle chargers.

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.

Improved Circuit Model for Simulating IGBT Switching Transients in VSCs

  • Haleem, Naushath Mohamed;Rajapakse, Athula D.;Gole, Aniruddha M.
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1901-1911
    • /
    • 2018
  • This study presents a circuit model for simulating the switching transients of insulated-gate bipolar transistors (IGBTs) with inductive load switching. The modeling approach used in this study considers the behavior of IGBTs and freewheeling diodes during the transient process and ignores the complex semiconductor physics-based relationships and parameters. The proposed circuit model can accurately simulate the switching behavior due to the detailed consideration of device-circuit interactions and the nonlinear nature of model parameters, such as internal capacitances. The developed model is incorporated in an IGBT loss calculation module of an electromagnetic transient simulation program to enable the estimation of switching losses in voltage source converters embedded in large power systems.

DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발 (Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid)

  • 김연우;권민호;박성열;김민국;양대기;최세완;오성진
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.

Study of Modulation Effect in Integrated Interface Under Controlling Switching Light-Emitting Diode Lighting Module

  • Hong, Geun-Bin;Jang, Tae-Su;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권6호
    • /
    • pp.253-257
    • /
    • 2011
  • This study was carried out to solve problems such as radio frequency band depletion, confusion risk, and security loss in existing visible wireless communication systems, and to determine the applicability of next-generation networks. A light-emitting diode (LED) light communication system was implemented with a controlling switching light module using the ATmega16 micro-controller. To solve the existing modulation effect and disturbance in visible light communication, an integrated interface was evaluated with a driving light module and analyzes its reception property. A transmitter/receiver using the ATmel's micro-controller, high-intensity white LED-6 modules, and infrared sensor KSM60WLM and visible sensor TSL250RD were designed. An experiment from the initial value of distance to 2.5 m showed 0.46 V of the voltage loss, and if in long distance, external light interference occurred and light intensity was lost by external impact and thus data had to be modified or reset repeatedly. Additionally, when we used 6 modules through the remote controller's lighting dimming, data could be transmitted up to 1.76 m without any errors during the day and up to 2.29 m at night with around 2~3% communication error. If a special optical filter can reduce as much external light as possible in the integrated interface, the LED for lighting communication systems may be applied in next generation networks.

1${\sim}$3 GHz 대역의 GMS Type Switch Module 특성에 관한 연구 (A study on the Characteristics of RF switch module on 1${\sim}$3 GHz Band)

  • 김인성;송재성;서영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1673-1675
    • /
    • 2004
  • The design, modeling and measurement of RF switch module for GSM applications is presented in this paper. RF switch module is constructed using a LTCC multi-layer switching circuit and integrated low pass filter. Insertion and return loss of the low pass filter were designed less than 0.3 dB and better than 12.7 dB at 900 MHz. The RF switch module contained 10 embedded passives and 3 surface mount components integrated on $4.6{\times}4.8{\times}1.2$ mm, 6-layer multi-layer integrated circuit. The insertion loss of switch module was measured at 900 MHz was 11 dB.

  • PDF