• 제목/요약/키워드: Switched-diode topologies

검색결과 6건 처리시간 0.015초

Development of a Switched Diode Asymmetric Multilevel Inverter Topology

  • Karthikeyan, D.;Krishnasamy, Vijayakumar;Sathik, Mohd. Ali Jagabar
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.418-431
    • /
    • 2018
  • This paper presents a new asymmetrical multilevel inverter with a reduced number of power electronic components. The proposed multilevel inverter is analyzed using two different configurations: i) First Configuration (with a switched diode) and ii) Second Configuration (without a switched diode). The presented topologies are compared with recent multilevel inverter topologies in terms of number of switches, gate driver circuits and blocking voltages. The proposed topologies can be cascaded to generate the maximum number of output voltage levels and they are suitable for high voltage applications. Various power quality issues are addressed for both of the configurations. The proposed 11-level inverter configuration is simulated using MATLAB and it is validated with a laboratory based experimental setup.

A Modified Switched-Diode Topology for Cascaded Multilevel Inverters

  • Karasani, Raghavendra Reddy;Borghate, Vijay B.;Meshram, Prafullachandra M.;Suryawanshi, H.M.
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1706-1715
    • /
    • 2016
  • In this paper, a single phase modified switched-diode topology for both symmetrical and asymmetrical cascaded multilevel inverters is presented. It consists of a Modified Switched-Diode Unit (MSDU) and a Twin Source Two Switch Unit (TSTSU) to produce distinct positive voltage levels according to the operating modes. An additional H-bridge synthesizes a voltage waveform, where the voltage levels of either polarity have less Total Harmonic Distortion (THD). Higher-level inverters can be built by cascading MSDUs. A comparative analysis is done with other topologies. The proposed topology results in reductions in the number of power switches, losses, installation area, voltage stress and converter cost. The Nearest Level Control (NLC) technique is employed to generate the gating signals for the power switches. To verify the performance of the proposed structure, simulation results are carried out by a PSIM under both steady state and dynamic conditions. Experimental results are presented to validate the simulation results.

Topologies of Active-Switched Quasi-Z-source Inverters with High-Boost Capability

  • Ho, Anh-Vu;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1716-1724
    • /
    • 2016
  • This paper proposes both an active-switched quasi-Z-source inverter (AS-qZSI) and an extended active-switched qZSI (EAS-qZSI), which are based on the classic qZSI. The proposed AS-qZSI adds only one active switch and one diode to the classic qZSI for increasing the voltage boost capability. Compared with other topologies based on the switched-inductor/capacitor qZSI, the proposed AS-qZSI requires fewer passive components in the impedance network under the same boost capability. Additionally, the proposed EAS-qZSI is designed by adding one inductor and three diodes to the AS-qZSI, which offers enhanced boost capability and lower voltage stress across the switches. The performances of the two proposed topologies are verified by simulation and experimental results obtained from a prototype with a 32-bit DSP built in a laboratory.

High Step-up DC-DC Converter by Switched Inductor and Voltage Multiplier Cell for Automotive Applications

  • Divya Navamani., J;Vijayakumar., K;Jegatheesan., R;Lavanya., A
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.189-197
    • /
    • 2017
  • This paper elaborates two novel proposed topologies (type-I and type-II) of the high step-up DC-DC converter using switched inductor and voltage multiplier cell. The advantages of these proposed topologies are the less voltage stress on semiconductor devices, low device count, high power conversion efficiency, high switch utilization factor and high diode utilization factor. We analyze the Type-II topologies operating principle and mathematical analysis in detail in continuous conduction mode. High-intensity discharge lamp for the automotive application can use the derived topologies. The proposed converters give better performance when compared to the existing types. Also, it is found that the proposed type-II converter has relatively higher voltage gain compared to the type-I converter. A 40 W, 12 V input voltage and 72 V output voltage has developed for the type-II converter and the performances are validated.

NOISE CHARACTERISTICS OF SIMPLIFIED FORWARD-TYPE RESONANT CONVERTER

  • Higashi, Toru
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.559-562
    • /
    • 2000
  • The problem of noise generation due to PWM switched-mode power converter has been widely noticed from the viewpoint of Electromagnetic Interference(EMI). Many kings of topologies for resonant converters have been developed both to overcome this noise problem and to attain high power efficiency. It is reported in references that resonant converters which are derived from PWM converter using resonant switch show much lower noise characteristics than PWM converter, and that current-mode resonant converter is more sensitive to stored charge in rectifying diode than voltage-mode counterpart concerning surge generation at diode’s turn-off. On the other hand, above mentioned resonant converters have defect of high-voltage stress on semiconductor switch and complicated circuit configuration. Hence, the simplified Forward-type resonant converter has been proposed and investigated due to its prominent features of simplicity of circuit configuration, low voltage stress and high stability. However, its noise characteristics still remain unknown. The purpose of this paper is to study quantitatively the noise characteristics of this simplified Forward-type resonant converter by experiment and analysis. The influence of parasitic elements and stored charge in rectifying diode on noise generation has been clarified.

  • PDF

Modified Capacitor-Assisted Z-Source Inverter Topology with Enhanced Boost Ability

  • Ho, Anh-Vu;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1195-1202
    • /
    • 2017
  • This paper presents a novel topology named a modified capacitor-assisted Z-source inverter (MCA-ZSI) based on the traditional ZSI. The impedance network of the proposed MCA-ZSI consists of two symmetrical cells coupled with two capacitors with an X-shape structure, and each cell has two inductors, two capacitors, and one diode. Compared with other topologies based on switched ZSI with the same number of components used at impedance network, the proposed topology provides higher boost ability, lower voltage stress across inverter switching devices, and lower capacitor voltage stress. The improved performances of the proposed topology are demonstrated in the simulation and experimental results.