• Title/Summary/Keyword: Switched-Capacitor Circuit

Search Result 121, Processing Time 0.025 seconds

Compact Power-on Reset Circuit Using a Switched Capacitor

  • Seong, Kwang-Su
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.625-631
    • /
    • 2014
  • We propose a compact power-on reset circuit consisting of a switched capacitor, a capacitor, and a Schmitt trigger inverter. A switched capacitor working with a clock signal charges the capacitor. Thus, the voltage across the capacitor is increased toward the supply voltage. The circuit provides a reset pulse until the voltage across the capacitor reaches the high threshold voltage of the Schmitt trigger inverter. The proposed circuit is simple, compact, has no static power consumption, and works for a wide range of power-on rising times. Furthermore, the clock signal is available while the reset pulse is activated. The proposed circuit works for up to 6 s of power-on rising time, and occupies a $60{\times}30{\mu}m^2$ active area.

High Step-up Active-Clamp Converter with an Input Current Doubler and a Symmetrical Switched-Capacitor Circuit

  • He, Liangzong;Zeng, Tao;Li, Tong;Liao, Yuxian;Zhou, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.587-601
    • /
    • 2015
  • A high step-up dc-dc converter is proposed for photovoltaic power systems in this paper. The proposed converter consists of an input current doubler, a symmetrical switched-capacitor doubler and an active-clamp circuit. The input current doubler minimizes the input current ripple. The symmetrical switched-capacitor doubler is composed of two symmetrical quasi-resonant switched-capacitor circuits, which share the leakage inductance of the transformer as a resonant inductor. The rectifier diodes (switched-capacitor circuit) are turned off at the zero current switching (ZCS) condition, so that the reverse-recovery problem of the diodes is removed. In addition, the symmetrical structure results in an output voltage ripple reduction because the voltage ripples of the charge/pump capacitors cancel each other out. Meanwhile, the voltage stress of the rectifier diodes is clamped at half of the output voltage. In addition, the active-clamp circuit clamps the voltage surges of the switches and recycles the energy of the transformer leakage inductance. Furthermore, pulse-width modulation plus phase angle shift (PPAS) is employed to control the output voltage. The operation principle of the converter is analyzed and experimental results obtained from a 400W prototype are presented to validate the performance of the proposed converter.

Parameter Tuning of Wireless Charging Circuit using Switched-Capacitor (스위치드-커패시터를 이용한 무선충전회로의 파라미터 튜닝)

  • Kim, Myoung-Su;Kang, Byeong-Geuk;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.315-316
    • /
    • 2013
  • This paper presents a parameter tuning method of a LLC resonant converter for a wireless charging circuit. A switched-capacitor is used to change the resonant frequency of the resonant circuit. The simulation results verify that the efficiency of the power transfer can be improved by a duty control of the switched-capacitor for various values of the coupling coefficient.

  • PDF

Drive Circuit for Switched Reluctance Motor with Flyback Transformer (Flyback Transformer를 갖는 Switched Reluctance Motor의 구동회로)

  • Lim, J.Y.;Cho, K.Y.;Baik, I.C.;Shin, D.J.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.833-836
    • /
    • 1993
  • A flyback type power converter circuit for switched reluctance motor drives is presented. In this converter circuit, the energy extracted from an off going phase is stored in an additional capacitor. The energy stored is used to either be returned to the source frequently or energize the conducting phase during the conduction interval through the transformer. The additional switch to pass the energy stored in the capacitor to the source or the conducting phase is switched under a relatively low voltage condition. Its switching frequency is relatively high so that the size of the transformer can be reduced. The design guideline for the capacitor and the transformer is described. The effectiveness of the presented converter circuit is compared to other circuits through the analysis and experiment.

  • PDF

Dynamic-Response-Free SMPS Using a New High-Resolution DPWM Generator Based on Switched-Capacitor Delay Technique (Switched-Capacitor 지연 기법의 새로운 고해상도 DPWM 발생기를 이용한 Dynamic-Response-Free SMPS)

  • Lim, Ji-Hoon;Park, Young-Kyun;Wee, Jae-Kyung;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • In this paper, we suggest the dynamic-response-free SMPS using a new high-resolution DPWM generator based on switched-capacitor delay technique. In the proposed system, duty ratio of DPWM is controlled by voltage slope of an internal capacitor using switched-capacitor delay technique. In the proposed circuit, it is possible to track output voltage by controlling current of the internal capacitor of the DPWM generator through comparison between the feedback voltage and the reference voltage. Therefore the proposed circuit is not restricted by the dynamic-response characteristic which is a problem in the existing SMPS using the closed-loop control method. In addition, it has great advantage that ringing phenomenon due to overshoot/undershoot does not appear on output voltage. The proposed circuit can operate at switching frequencies of 1MHz~10MHz using internal operating frequency of 100 MHz. The maximum current of the core circuit is 2.7 mA and the total current of the entire circuit including output buffer is 15 mA at the switching frequency of 10 MHz. The proposed circuit has DPWM duty ratio resolution of 0.125 %. It can accommodate load current up to 1 A. The maximum ripple of output voltage is 8 mV. To verify operation of the proposed circuit, we carried out simulation with Dongbu Hitek BCD $0.35{\mu}m$ technology parameter.

Design of Gyrator Filter using Switched Capacitors (Switched Capacitor를 이용한 Gyrator여파기의 설계)

  • 원청육;이문수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 1982
  • Recently, there has been a great interest in the realization of analog fiters using switched and fixed capacitors and active elements. It is known that a switched capacitor has an performance much better that a resistor in the characteristics of temperature and linearity, and can be fabricated on the much smaller area than the resistor. In this paper all the resistors in the gyrator filter network are relpaced by the switched capacitors for an SC-Gyrator filter circuit can be fully integrated into a single chip by using MOS technology. By experiments we show that the response of designed SC-Gyrator filter is much similar to that of its protorype gyrator filter.

  • PDF

High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple

  • Kim, Do-Hyun;Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1468-1479
    • /
    • 2015
  • Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.

Design and Implementation of Power Management Circuit for Semi-active RFID Tags (반 능동형 RFID 태그를 위한 전원 제어 회로 설계 및 구현)

  • Kim, Yeong-Kyo;Yi, Kyeon-Gil;Cho, Sung-Kyo;Nam, Ki-Hun;Kim, Shi-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1839-1844
    • /
    • 2010
  • A power management controller circuit with switched capacitor mode down regulator and battery charger block for semi-active RFID tags was proposed and fabricated. The main purposes of the proposed switched capacitor mode down regulator and battery charger block are to reduce standby current and to provide a self-controlled thin film battery charger by detecting the received RF power, respectively. Fabricated chip area is $360,000{\mu}m^2$ and measured standby current was about $1.3{\mu}A$. To further reduction of standby current, a wake-up circuit has to be included in the power management controller.

A Phase-Locked Loop Using Switched-Capacitor Loop Filter (Switched-Capacitor 루프 필터를 이용한 Phase-Locked Loop의 설계)

  • 최근일;이용석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.333-336
    • /
    • 2000
  • Modem standard CMOS process technology suffer from so large amount of PVT i.e process, voltage and temperature variation over 30% of its desired value that accurate resistor value is hard to be achieved. A filter using switched-capacitor(SC) circuit has a time constant proportional to relative capacitor area ratio rather than its absolute value. If the PLL's loop filter were made out of SC circuit, there could be much less PVT variation problem. Furthermore, programmability on the loop filter can be achieved In this paper, we present the PLL with SC loop filter. The accuracy provided by SC filter would be helpful to enhance PLL's locking behaviour.

  • PDF

A New Multiple-Output Switched-Capacitor Based DC/DC Converter (Switched-Capacitor회로를 이용한 새로운 다출력 DC-DC 컨버터)

  • 여주용;최병조;김흥근;안태영
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.631-634
    • /
    • 1999
  • A new multiple-output dc-to-dc converter based on a switched capacitor circuit is proposed. The proposed converter offers multiple outputs that can be individually regulated by a direct output voltage feedback or indirect cross regulations. The performance of the new converter is demonstrated using a 10W experimental converter that delivers 5V/1A output and 3.3V/1A output from a 10∼15V input source.

  • PDF