• Title/Summary/Keyword: Switched capacitors

Search Result 65, Processing Time 0.03 seconds

Design of Gyrator Filter using Switched Capacitors (Switched Capacitor를 이용한 Gyrator여파기의 설계)

  • 원청육;이문수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.1
    • /
    • pp.10-17
    • /
    • 1982
  • Recently, there has been a great interest in the realization of analog fiters using switched and fixed capacitors and active elements. It is known that a switched capacitor has an performance much better that a resistor in the characteristics of temperature and linearity, and can be fabricated on the much smaller area than the resistor. In this paper all the resistors in the gyrator filter network are relpaced by the switched capacitors for an SC-Gyrator filter circuit can be fully integrated into a single chip by using MOS technology. By experiments we show that the response of designed SC-Gyrator filter is much similar to that of its protorype gyrator filter.

  • PDF

Voltage and Reactive Power Control By Using Genetic Algorithm (유전알고리즘을 이용한 전압/무효전력 제어)

  • Kim, Jong-Yul;Kim, Hak-Man;Kook, Kyung-Soo;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.295-297
    • /
    • 2002
  • In this study, Genetic Algorithm(GA) is applied for voltage and reactive power control in power system. In power system, switched shunt capacitors are used to improve the voltage profile and to reduce power losses. There are many switched shunt capacitors in power system. Therefore, it is necessary to coordinate these switched shunt capacitors. A Genetic Algorithm(GA) is used to find optimal coordination of switched shunt capacitors in power system. The effectiveness of the proposed approach is demonstrated in KEPCO's power system.

  • PDF

Optimal Control of UPFC and Switched Shunt Capacitor by Using Genetic Algorithm (GA를 이용한 UPFC와 전력용 콘덴서의 최적 제어)

  • Kim, Hak-Man;Kim, Jong-Yul;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.9-11
    • /
    • 2003
  • In power system planing and operation, voltage and reactive power control are very important. The voltage deviation and system losses can be reduced through control of reactive power sources. In general, there are several different reactive power sources, we used UPFC and switched shunt capacitor to improve the voltage profile and to reduce system losses in this study. Since there are many switched shunt capacitors in power system, so it is necessary to coordinate these switched shunt capacitors. In this study, Genetic Algorithm(GA) is used to find optimal coordination of UPFC and switched shunt capacitors in a local area of power system. In case study, the effectiveness of the proposed method is demonstrated in KEPCO's power system. The simulation is performed by PSS/E.

  • PDF

A Design of 8-bit Switched-Capacitor Cyclic DAC with Mismatch Compensation of Capacitors (캐패시터 부정합 보정 기능을 가진 8비트 스위치-캐패시터 사이클릭 D/A 변환기 설계)

  • Yang, Sang-Hyeok;Song, Ji-Seop;Kim, Su-Ki;Lee, Kye-Shin;Lee, Yong-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.315-319
    • /
    • 2011
  • A switched-capacitor cyclic DAC scheme with mismatch compensation of capacitors is designed. In cyclic DAC, a little error between two capacitors is accumulated every cycle. As a result, the accumulated error influences the final analog output which is wrong data. Therefore, a mismatch compensation technique was proposed and the error can be effectively reduced, which alleviates the matching requirement. In order to verify the operation of the proposed DAC, an 8-bit switched-capacitor cyclic DAC is designed through HSPICE simulation and implemented through magna 0.18um standard CMOS process.

A Buck-Boost Type Charger with a Switched Capacitor Circuit

  • Wu, Jinn-Chang;Jou, Hurng-Liahng;Tsai, Jie-Hao
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, a buck-boost type battery charger is developed for charging battery set with a lower voltage. This battery charger is configured by a rectifier circuit, an integrated boost/buck power converter and a switched capacitors circuit. A boost power converter and a buck power converter sharing a common power electronic switch are integrated to form the integrated boost/buck power converter. By controlling the common power electronic switch, the battery charger performs a hybrid constant-current/constant-voltage charging method and gets a high input power factor. Accordingly, both the power circuit and the control circuit of the developed battery charger are simplified. The switched capacitors circuit is applied to be the output of the boost converter and the input of the buck converter. The switched capacitors circuit can change its voltage according to the utility voltage so as to reduce the step-up voltage gain of the boost converter when the utility voltage is small. Hence, the power efficiency of a buck-boost type battery charger can be improved. Moreover, the step-down voltage gain of the buck power converter is reduced to increase the controllable range of the duty ratio for the common power electronic switch. A prototype is developed and tested to verify the performance of the proposed battery charger.

A Study on Design of Active Filters Using Switched Capacitors (Switched Capacitor를 사용한 능동 여파기 설계에 관한 연구)

  • 이문수;김상호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 1979
  • All the resitors in the active RC filter networks can be relplaced by the switched capacitors. Therefore, An SC filter circuit can be fully integrated using MOS technology. A switched capacitor is much better than a resistor in temperature and linearity characteristics, and the former can be fabricated on the much smaller area then the latter. In this paper, It is given the generalized disign method of the active SC filter from the active RC filter using Bilinear Z-transformation. By SC filtering Techniques using Bilinear Z-transform, It enalbes us to realize the FDNR and Gyrator filters, which could not be realized in the exsisting designs, and it permits the processing of signals at much higher frequenies that many previous designs do. Experiments show that the response of the SC active filter is similiar to that of its prototype active RC filter.

  • PDF

Optimal Control of Voltage and Reactive Power in Local Area Using Genetic Algorithm (유전알고리즘을 이용한 지역계통의 전압 및 무효전력 최적제어)

  • 김종율;김학만;남기영
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.42-48
    • /
    • 2003
  • In system planing and operation, voltage and reactive power control is very important. The voltage deviation and system losses can be reduced through control of reactive power sources. In general, there are several different reactive power sources, we used switched shunt capacitor to improve the voltage profile and to reduce system losses. Since there are many switched shunt capacitors in power system, so it if necessary to coordinate these switched shunt capacitors. In this study, Genetic Algorithm (GA) is used to find optimal coordination of switched shunt capacitors in a local area of power system. In case study, the effectiveness of the proposed method is demonstrated in KEPCO's power system. The simulation is performed by PSS/E and the results of simulation are compared with sensitivity method.

Steady-State Characteristics of Resonant Switched Capacitor Converters

  • Shoyama Masahito;Deriha Fumitoshi;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • Conventional switched capacitor converters have an inherent drawback that their efficiency decreases as the output current increases. This inherent drawback is due to a periodical forced charging and discharging operation in the internal switched capacitors accompanied by a large capacitor current. Their efficiency can not be increased by decreasing its internal resistance. As a result, conventional switched capacitor converters have been limited to uses with a very small output current. To solve this problem we presented a novel switched capacitor converter topology that uses a resonant operation instead of the forced charging and discharging operation. Its advantage over a conventional switched capacitor converter is higher efficiency even in a high output current region. In this paper, the operation analysis and steady-state characteristics are described in detail for a half buck type switched capacitor converter, and they are confirmed by experimentation.

Embedded Switched-Inductor Z-Source Inverters

  • Nguyen, Minh-Khai;Lim, Young-Cheol;Chang, Young-Hak;Moon, Chae-Joo
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2013
  • In this paper, a ripple input current embedded switched-inductor Z-source inverter (rESL-ZSI) and a continuous input current embedded switched-inductor Z-source inverter (cESL-ZSI) are proposed by inserting two dc sources into the switched-inductor cells. The proposed inverters provide a high boost voltage inversion ability, a lower voltage stress across the active switching devices, a continuous input current and a reduced voltage stress on the capacitors. In addition, they can suppress the startup inrush current, which otherwise might destroy the devices. This paper presents the operating principles, analysis, and simulation results, and compares them to the conventional switched-inductor Z-source inverter. In order to verify the performance of the proposed converters, a laboratory prototype was constructed with 60 $V_{dc}$ input to test both configurations.

A Novel Resonant Converter for driving Switched Reluctance Motor (스위치드 릴럭턴스 전동기 구동을 위한 새로운 공진형 컨버터)

  • 김정성;김현중;양이우;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.413-417
    • /
    • 1998
  • In order to obtain better performance for a SRM(switched reluctance motor) drive, the commutation from one phase to another must be as fast as possible. In this paper a novel converter for SRM drive is proposed, which can accelerate the turn-off and turn-on time by using two capacitors to form a resonant circuit with the motor inductance. Two capacitors recover rapidly stored energy in the off going phase and establish rapidly the current rising in the on going phase. As a result, the current tail can be shortened and the dwell angle in the positive torque region can be extended. And comparing with the asymmetric converter, this converter has higher energy availability in energy conversion process and less number of switches.

  • PDF