• Title/Summary/Keyword: Swirl inlet port

Search Result 15, Processing Time 0.024 seconds

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

A Study on the Characteristics of Combustion Products of Swirling Furnace (선회분류 연소로의 연소 생성물 특성에 관한 연구)

  • 심순용;노재성;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.113-122
    • /
    • 1994
  • This paper describes the effects of combustion parameters on the characteristics of combustion products in swirling flow furnace. The concentration of combustion products and temperature distribution of flow field in the furnace have been investigated by numerical method. The fuel was injected into the furnace and the swirling device was constructed with three kinds of vane swirler at inlet port of furnace. The results of this study showed that the effect of combustion parameters on the concentration characteristics of carbon monoxide and nitrogen monoxide of combustion products. It was found that the pollutant formation wad dependent on the equivalence ratio and swirl intensity level.

  • PDF

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

Optimization of ejector for swirl flow using CFD (CFD를 이용한 회전 운동을 하는 이젝터의 최적화)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • This paper investigates the effect of the rotational motion of a driving fluid generated by a rotational motion device at the inlet of a driving nozzle for a gas-liquid ejector, which is the main device used for ozonated ship ballast water treatment. An experimental apparatus was constructed to study the pressure and suction flow rate of each port of the ejector according to the back pressure. Experimental data were acquired for the ejector without rotational motion. Based on the data, a finite element model was then developed. The rotational motion of the driving fluid could improve the suction efficiency of the ejector based on the CFD model. Based on the CFD results, structure optimization was performed for the internal shape of the rotation induction device to increase the suction flow rate of the ejector, which was performed using the kriging technique and a metamodel. The optimized rotation induction device improved the ejector efficiency by about 3% compared to an ejector without rotational motion of the driving fluid.