• Title/Summary/Keyword: Swing pump

Search Result 14, Processing Time 0.019 seconds

Real-Time Simulation of an Excavator Considering the Functional Valves of the MCV (MCV의 기능밸브를 고려한 굴삭기의 실시간 시뮬레이션)

  • Im, Yong-Hyeon;Lee, Sang-Wook;Cho, Min-Gi;Shin, Dae-Young;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.38-47
    • /
    • 2019
  • In this paper, a real-time simulation model of an excavator using Amesim was proposed, considered the operation of functional valves with the main control valve (MCV). The hydraulic system models including the pump and MCV have been developed. The kinematic and dynamic models of the manipulator have also been developed, to confirm the behavior of the excavator. The MCV model includes various functional valves such as the regenerative valves, holding valves, swing and boom priority valves, and regen-cut valves so that simulations similar to real excavators can be performed. Additionally, to obtain the real-time calculation performance, the parts with no major influence on the dynamic behavior were simplified, high frequency factors were removed, and parameters were optimized. The models were compared with each other through the numerical analysis with variable time-step and fixed time-step, and the results were verified by comparison with the results of the actual vehicle tests.

In-line sputtering system에서 Al:ZnO 막의 대면적 증착시 가스 유동의 영향

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.194-194
    • /
    • 2010
  • 태양전지용 투명전도막에 사용되는 Al-doped ZnO (AZO) 막은 저가이면서도 가시광역 영역에서 갖는 우수한 투과율과 낮은 비저항을 갖는 특성 때문에 ITO의 대체 재료로서 최근 활발한 연구가 진행되고 있다. 특히, 양산 현장에서는 in-line type의 대형 sputtering system에서 증착하고 있으며 높은 증착 속도와 박막 특성의 균일도가 중요한 과제다. 본 연구에서는 $2\;m\;{\times}\;1\;m\;{\times}\;0.2\;m$의 sputtering system에서 기판 캐리어를 이용해서 커다란 기판을 좁고 긴 타겟의 양쪽으로 왕복 운동을 하는 swing dynamic deposition 방법으로 $272\;mm\;{\times}\;500\;mm$ 크기의 AZO target (Al 2 wt%)을 이용하여 bipolar pulsed dc로 증착하였다. 이 시스템의 배기는 TMP와 cryo pump를 이용해서 $5\;{\times}\;10^{-7}\;Torr$의 기본 진공도를 얻으며, 공정 중에는 TMP만 사용하였다. 하지만, 본 시스템의 TMP는 비대칭 적으로 한쪽에 치우쳐 설치되어 있는데, 이것이 챔버 내에서 공정 가스인 Ar의 유동의 불균일도를 초래하게 되며, 그것이 증착되는 박막의 두께 균일도 및 특성 균일도에 영향을 주고 있음을 알 수 있었다. 본 연구에서는 다른 기본 진공도에서 증착된 AZO 박막의 특성 차이를 알아보고 비대칭 배기 구조가 in-line type 시스템에서 어떠한 두께 및 특성 불균일도를 가져오는지, 그리고 시스템 내부에 발생시키는 압력 불균일도를 상용 3차원 전산 유체해석 프로그램인 CFD-ACE+를 이용하여 분석하였다.

  • PDF

Optimal Design of Urban MICROGRID using Economical Analysis Program (경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계)

  • Seung-Duck, Yu;SungWoo, Yim;Youseok, Lim;SungWook, Hwang;JuHak, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.

A 3.2Gb/s Clock and Data Recovery Circuit without Reference Clock for Serial Data Communication (시리얼 데이터 통신을 위한 기준 클록이 없는 3.2Gb/s 클록 데이터 복원회로)

  • Kim, Kang-Jik;Jung, Ki-Sang;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.72-77
    • /
    • 2009
  • In this paper, a 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial data communication without the reference clock is described This CDR circuit consists of 5 parts as Phase and frequency detector(PD and FD), multi-phase Voltage Controlled-Oscillator(VCO), Charge-pumps (CP) and external Loop-Filter(KF). It is adapted the PD and FD, which incorporates a half-rate bang-bang type oversampling PD and a half-rate FD that can improve pull-in range. The VCO consists of four fully differential delay cells with rail-to-rail current bias scheme that can increase the tuning range and tuning linearity. Each delay cell has output buffers as a full-swing generator and a duty-cycle mismatch compensation. This materialized CDR can achieve wide pull-in range without an extra reference clock and it can be also reduced chip area and power consumption effectively because there is no additional Phase Locked- Loop(PLL) for generating reference clock. The CDR circuit was designed for fabrication using 0.18um 1P6M CMOS process and total chip area excepted LF is $1{\times}1mm^2$. The pk-pk jitter of recovered clock is 26ps at 3.2Gb/s input data rate and total power consumes 63mW from 1.8V supply voltage according to simulation results. According to test result, the pk-pk jitter of recovered clock is 55ps at the same input data-rate and the reliable range of input data-rate is about from 2.4Gb/s to 3.4Gb/s.