• Title/Summary/Keyword: Swine influenza

Search Result 52, Processing Time 0.029 seconds

Influenza Associated Pneumonia (인플루엔자 연관 폐렴)

  • Kim, Jae-Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • After an outbreak of H1N1 influenza A virus infection in Mexico in late March 2009, the World Health Organization raised its pandemic alert level to phase 6, and to the highest level in June 2009. The pandemic H1N1/A influenza was caused by an H1N1 influenza A virus that represents a quadruple reassortment of two swine strains, one human strain, and one avian strain of influenza. After the first case report of H1N1/A infection in early May 2009, South Korea was overwhelmed by this new kind of influenza H1N1/A pandemic, which resulted in a total of 700,000 formally reported cases and 252 deaths. In this article, clinical characteristics of victims of H1N1/A influenza infection, especially those who developed pneumonia and those who were cared for in the intensive care unit, are described. In addition, guidelines for the treatment of H1N1/A influenza virus infection victims in the ICU, which was suggested by the Korean Society of Critical Care Medicine, are introduced.

A Lesson in Swine Fever (뉴스초점 - 신종플루(H1N1)의 교훈)

  • Choo, Seung-Hwan
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.6
    • /
    • pp.42-46
    • /
    • 2009
  • Every year influenza contributes to the death of 72 people in the South korea, 20,000 in the U.S. and perhaps millions worldwide. The swine fever so-called the noble flu A H1N1, a strain of the flu virus, which jumped species and burst into the human population in March and April of this year. The outbreak of 2009 novel H1N1 was the fourth in 100 years. Fortunately, it led to today's comparatively tame swine flu than the vicious 1918, which was original H1N1 pandemic flu virus, killed at least 40 million worldwide in an ongoing pandemic era. Although the 2009 H1N1 which is still in full swing, this global flu epidemic is already teaching scientists valuable lessons about pandemics. Evidence accumulated these days indicates that the 2009 H1N1 was not entirely new to all human immune systems. This article introduces only an outline for our better understanding the basic mechanisms of influenza and the vaccination about longstanding fears of that worst-case scenario engendered pandemic that are paying off today.

  • PDF

Envelope Proteins Pertain with Evolution and Adaptive Mechanism of the Novel Influenza A/H1N1 in Humans

  • Mondal, Shakhinur Islam;Zubaer, Abdullah;Thapa, Simrika;Saha, Chinmoy;Alum, Md. Asraful;Reza, Md. Salman;Akter, Arzuba;Azad, Abul Kalam
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1500-1505
    • /
    • 2010
  • The novel swine-origin influenza A/H1N1 virus (S-OIV) first detected in April 2009 has been identified to transmit from humans to humans directly and is the cause of the currently emerged pandemic. In this study, nucleotide and deduced amino acid sequences of the hemagglutinin (HA) and neuraminidase (NA) of the S-OIV and other influenza A viruses were analyzed through bioinformatic tools for phylogenetic analysis, genetic recombination, and point mutation to investigate the emergence and adaptation of the S-OIV in humans. The phylogenetic analysis showed that the HA comes from triple reassortant influenza A/H1N2 and the NA from Eurasian swine influenza A/H1N1, indicating that HA and NA descend from different lineages during the genesis of the S-OIV. Recombination analysis ified the possibility of occurrence of recombination in HA and NA, denoting the role of reassortment in the outbreak. Several conservative mutations were observed in the amino acid sequences of the HA and NA, and these mutated residues were identical in the S-OIV. The results reported herein suggest the notion that the recent pandemic is the result of reassortment of different genes from different lineages of two envelope proteins, HA and NA, which are responsible for the antigenic activity of the virus. This study further suggests that the adaptive capability of the S-OIV in humans is acquired by the unique mutations generated during emergence.

Rapid Determining for Subtypes and Pandemic Type of Swine Influenza Virus by Diagnostic One-step RT-PCR (진단용 one-step RT-PCR을 통한 돼지 인플루엔자 바이러스의 아형 및 pandemic 유형에 대 한 신속한 결정)

  • Kim, Gwang Il;Kim, Jee In;Kwon, Jin-Hyeap;Min, Yoo Hong;Kang, Joo Il;Lee, Chang-Ho;Kim, Sung-Hee;Lim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.555-562
    • /
    • 2018
  • Swine influenza virus (SIV) causes one of the most common diseases of the pig population, and its subtypes are determined by hemagglutinin (HA) and neuraminidase (NA). Recently, the SIV subtype diagnosis has been developed. The method using antigen-antibody reaction rather than PCR was mainly used because of the large change in the ribonucleotide sequences of SIV. Here, we have developed 10 diagnostic primer sets through multi-nucleotide sequences alignment of spreaded SIV since 2008 in Korea and then optimized the reaction of the one-step RT-PCR for rapid determination of SIV subtype. In addition, specific primers were designed to early determine the pandemic SIV by detecting unique M sequences proven in highly infectious and virulent subtypes of the influenza H1N1 (pH1N1). Here, some of the SIVs spread in Korea from 2008 to 2014 have been tested to determine the subtypes and pandemic potential of SIV. All diagnostic primer sets were found to be able to accurately determine the SIV subtype and to detect the pandemic SIV. In conclusion, it was confirmed that the optimized one-step RT-PCR analysis using these primer sets is useful for rapid diagnosis of SIV subtypes. These results can be used for development of SIV subtype diagnostic kit to early detect before virulent SIV spreads do.

A Case of Nephrotic Syndrome with Swine-origin H1N1 Influenza Virus (H1N1 인플루엔자 바이러스 감염과 동반되어 발생한 신증후군 1례)

  • Kim, Sae-Yoon;Kim, Myoung-Uk;Lee, Sang-Su;Park, Yong-Hoon
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.218-222
    • /
    • 2010
  • Nephrotic syndrome is a clinical syndrome characterized by heavy proteinuria, hypoalbuminemia, edema and hyperlipidemia. Causes of idiopathic nephrotic syndrome include minimal change nephrotic syndrome (MCNS), focal segmental glomerulosclerosis (FSGS) and mesangial proliferation. Other causes of nephrotic syndrome are rare genetic disorders and secondary diseases associated with drugs, infections, or neoplasia. Since February 2009, a swine-origin H1N1 influenza virus (S-OIV) from Mexico has been spread among humans in unexpected rapidity. S-OIV is markedly different from seasonal influenza, in that many of those affected are previously healthy young people. While pulmonary complications of S-OIV infection have been frequently documented, renal complications have not been as widely recognized. We report a case of 4 year-old boy who had developed nephrotic syndrome after S-OIV infection with good response after steroid treatment.

Comparison of serological methods for detection of avian influenza virus antibodies (가금인플루엔자 바이러스 항체검출을 위한 혈청학적 진단법 비교)

  • Han, Myung-guk;Park, Kyoung-yoon;Kwon, Yong-kuk;Kim, Jae-hong
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.73-80
    • /
    • 2002
  • An enzyme-linked immunosorbent assay (ELISA) using purified hemagglutinin of swine influenza virus (H1N1) as antigen was developed for detection of antibody to avian influenza virus (AIV). The sensitivity and specificity of a developed and commercial available ELISA kits were compared with those of agar gel precipitation (AGP) test and hemagglutination inhibition (HI) test using sera collected from chickens under condition of field exposure. The concentration of antigen, serum dilution and concentration of enzyme-conjugated secondary antibody in developed ELISA (S-ELISA) were 0.5ug/100ul, 1:200 and 0.03ug/100ul, respectively. The correlation coefficients between S-ELISA and commercial ELISA and HI titers were 0.419 and 0.533, respectively. A significant correlation (p < 0.01) was not found between HI and ELISA titers. The S-ELISA was found to be as more sensitive and specific than the AGP test, showing 86.8% sensitivity and 85.3% specificity. It is suggested that the ELISA using the SIV as antigen may be useful method as an investigating tool for AIV serological surveillance.

Development of Multiplex RT-PCR Assays for Rapid Detection and Subtyping of Influenza Type A Viruses from Clinical Specimens

  • Chang, Hee-Kyoung;Park, Jeung-Hyun;Song, Min-Suk;Oh, Taek-Kyu;Kim, Seok-Young;Kim, Chul-Jung;Kim, Hyung-Gee;Sung, Moon-Hee;Han, Heon-Seok;Hahn, Youn-Soo;Choi, Young-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1164-1169
    • /
    • 2008
  • We developed multiplex RT-PCR assays that can detect and identify 12 hemagglutinin (H1-H12) and 9 neuraminidase (N1-N9) subtypes that are commonly isolated from avian, swine, and human influenza A viruses. RT-PCR products with unique sizes characteristic of each subtype were amplified by multiplex RT-PCRs, and sequence analysis of each amplicon was demonstrated to be specific for each subtype with 24 reference viruses. The specificity was demonstrated further with DNA or cDNA templates from 7 viruses, 5 bacteria, and 50 influenza A virus-negative specimens. Furthermore, the assays could detect and subtype up to $10^5$ dilution of each of the reference viruses that had an original infectivity titer of $10^6\;EID_{50}/ml$. Of 188 virus isolates, the multiplex RT-PCR results agreed completely with individual RT-PCR subtyping results and with results obtained from virus isolations. Furthermore, the multiplex RT-PCR methods efficiently detected mixed infections with at least two different subtypes of influenza viruses in one host. Therefore, these methods could facilitate rapid and accurate subtyping of influenza A viruses directly from field specimens.

One step multiplex RT-PCR preventing DNA carryover contamination for differential diagnosis of swine influenza viruses (DNA 교차 오염 방지 기능을 가진 돼지 인플루엔자바이러스 감별진단용 one-step multiplex RT-PCR 진단법)

  • Kim, Hee-Jung;Kim, Eun-Mi;Shin, Yeun-Kyung;Song, Jae-Young;Kim, Seong-Hee;Lee, Kyoung-Ki;Lee, Myoung-Heon;Kim, Young-Hwa;Park, Jun-Cheol;Yeo, Sang-Geon;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.4
    • /
    • pp.263-271
    • /
    • 2014
  • In this study, we developed a cost and time saving one-step multiplex RT-PCR for the simultaneous detection and differentiation of swine influenza viruses (SIV) and 2009 pandemic influenza H1N1 virus (pH1N1). The one-step multiplex RT-PCR using four sets of primer was confirmed to be capable of detection of all SIV subtypes and differential diagnosis of major SIV subtype H1, H3 and pH1N1 on individual or mixed viral culture samples. The sensitivity of the multiplex RT-PCR was determined to be at least $2^{-6}$ $HA/25{\mu}L$ of the presented SIVs, providing sufficient efficacy for a routine SIV monitoring in diagnostic laboratories. In addition, compared with the conventional RT-PCR methods that cannot avoid the carryover DNA contamination, the developed RT-PCR applied with the uracil DNA glycosylase (UNG) system was proven to prevent a false positive reaction by carryover contamination of the pre-amplified DNA. In conclusion, the one-step RT-PCR with UNG system could be applicable to detect and differentiate of SIV from the viral cultures without worry of carryover DNA contamination in clinical laboratories.

Surface glycoproteins determine the feature of the 2009 pandemic H1N1 virus

  • Kim, Jin Il;Lee, Ilseob;Park, Sehee;Park, Man-Seong
    • BMB Reports
    • /
    • v.45 no.11
    • /
    • pp.653-658
    • /
    • 2012
  • After the outbreak of the swine-origin influenza A H1N1 virus in April 2009, World Health Organization declared this novel H1N1 virus as the first pandemic influenza virus (2009 pH1N1) of the $21^{st}$ century. To elucidate the characteristics of 2009 pH1N1, the growth properties of A/Korea/01/09 (K/09) was analyzed in cells. Interestingly, the maximal titer of K/09 was higher than that of a seasonal H1N1 virus isolated in Korea 2008 (S/08) though the RNP complex of K/09 was less competent than that of S/08. In addition, the NS1 protein of K/09 was determined as a weak interferon antagonist as compared to that of S/08. Thus, in order to confine genetic determinants of K/09, activities of two major surface glycoproteins were analyzed. Interestingly, K/09 possesses highly reactive NA proteins and weak HA cell-binding avidity. These findings suggest that the surface glycoproteins might be a key factor in the features of 2009 pH1N1.

Characterization of the infection pattern of porcine respiratory disease complex (PRDC) in the northern area of Gyeongsangnam-do, Korea (경상남도 북부지역 돼지 사육농가에 대한 돼지호흡기복합감염증 양상 조사)

  • Kim, Min-Hee;Park, Jong-Sik;Lee, Min-Kweon;Kim, Chul-Ho;Shin, Jung-Sup;Kim, Hyun-Joon
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • The prevention of porcine respiratory disease complex (PRDC) is very important because of its high infection-rates in the swine farms and the economic impact in swne industry in Korea. To control the prevalence of PRDC, it is important to know about infection patterns of it. Therefore, this study aimed to investigate the infection patterns of PRDC in the northern area of Gyeongsangnam-do. To this end, the infection of porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), Actinobacillus pleuropneumoniae (APP), Mycoplasma hyopneumoniae (MH), and Swine influenza virus (SIV) were examined using 120 pig lung tissues by PCR analysis. As a result, single pathogen positive specimens were 25.0% and the others (75.0%) were turned out to be PRDC with at least two pathogens. Among PRDCs, 50 specimens (41.7%) was infected with PRRSV, PCV2, MH and SIV. Ten specimens (8.3%) showed triple infections of PRRSV, PCV2 and MH. Double infected specimens for PRRSV and PCV2 were 10 (8.3%), and for PCV2 and APP were 20 (16.7%).