• 제목/요약/키워드: Swimbladder

검색결과 14건 처리시간 0.032초

부레를 갖는 6개 어종의 광대역 음향산란특성에 대한 부레 가스 제거의 효과 (The Effect of Removing Swimbladder Gas on the Broadband Acoustic Backscattering Characteristics of Six Species of Swimbladdered Fish)

  • 이대재
    • 한국수산과학회지
    • /
    • 제53권2호
    • /
    • pp.218-230
    • /
    • 2020
  • The single anatomical attribute that has the greatest influence on acoustic scattering from fish is the presence or absence of a swimbladder. This study examined the effect of removing the gas from the swimbladder on the broadband backscattering characteristics of six species of swimbladdered fish: striped beakperch Oplegnathus fasciatus, black scraper Thamnaconus modestus, dark-banded rockfish Sebastes inermis, goldeye rockfish Sebastes thompsoni, black rockfish Sebastes schlegeli and panther puffer Takifugu pardalis. Before and after removing the gas from the swimbladder, the species-specific, frequency-dependent backscattered echo signals from anaesthetized individuals of each fish species were measured at approximately 1° intervals spanning a 90° aspect angle range from -45° (head down) to +45° (head up) using a broadband echo sounder operating at 100-200 kHz. The relationship between the wavelength-normalized backscattering cross section (σ/λ2) and fish length (L/λ) was calculated for each species. The average σ/λ2 value for the six fish species at a L/λ range of 19.79-25.85, with a mean of 22.89, was reduced by approximately 52.3% when the gas was removed.

민어과 어류의 명음에 관한 음향학적 특성 (Characterization of sounds produced by 3 sciaenid species)

  • 이경훈;양용수;김진구;안희춘;신종근
    • 수산해양기술연구
    • /
    • 제43권3호
    • /
    • pp.206-211
    • /
    • 2007
  • The sciaenid species, which has swimbladder, generates sounds by vibrating in its length wards when spawning or getting stimulus from something else. This research analyzed on sound frequency characteristics relatives to their swimbladder length of three sciaenid species, yellow croaker(Larimichthys polyactis), brown croaker(Miichthys miiuy), and white flower croaker(Nibea albiflora). As results, the dominant frequency for yellow croaker ranged over 38.08 to 141.60Hz in wide frequency band, and the averaged pulse duration expressed in $280.3{\pm}156.0ms$. For brown croaker, the dominant frequency ranged in 49.80 to 59.57Hz, and the averaged pulse duration was $129.1{\pm}36.9ms$. Moreover, the dominant frequency of white flower croaker ranged in 73.24 to 86.91Hz, and the averaged pulse duration was $88.0{\pm}15.9ms$, it has shorter pulse duration than any two species. Therefore, the dominant frequency relatives to swimbladder length of sciaenidae showed that it had widely resonant characteristics and long pulse duration as in shorter swimbladder length. Additionally, for white flower croaker, we could confirm their behavior and sounds in response to production of recorded sounds using underwater speaker.

Application of sound scattering models to swimbladdered fish, red seabream (Chrysophys major)

  • Kang Donhyug;Hwang Doojin;Na Jungyul;Kim Suam
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.233-236
    • /
    • 2000
  • The acoustical response of fish depends on size and physical structure na, most important, on the presence or absence of a swimbladder. Acoustic scattering models for swimbladdered fish represent a fish by an ideal pressure-release surface having the size and shape as the swimbladder. Target strength experiments of red seabream (Chrysophrys major) have been conducted using 38 (split-beam), 120 (split-beam) and 200kHz (dual-beam) frequencies. At each start of each experiment, the live fish are placed in the cage at the surface, then the cage is lowed to about $4{\cal}m$ depth where it remains during the measurements. To test the acoustic models, predictions of target strength based on swimbladder morphometries of 10 red seabream offish total length from $103{\cal}mm{\;}to{\;}349{\cal}mm$ ($3 <$TL/\lambda$ < 45)are compared with conventional target strength measurements on the same, shock-frozen immediately after caged experiments. X-ray was projected along dorsal aspect to know the morphological construction of swimbladder. and fish body. At high frequencies, Helmholtz-kirchhoff(HK) approximation would greatly enhance swimbladdered fish modeling. Sound scattering model [HK-ray approximation model] for comparison to experimental target strength data was used to model backscatter measurements from individual fish. The scattering data can be used in the inverse method along with multiple frequency sonar systems to investigate the adequacy of classification and identification of fish

  • PDF

KRM 모델을 이용한 전갱이의 다주파수 음향산란특성 (Multifrequency acoustic scattering characteristics of jack mackerel by KRM model)

  • 황강석;윤은아;이경훈;이형빈;황두진
    • 수산해양기술연구
    • /
    • 제51권3호
    • /
    • pp.424-431
    • /
    • 2015
  • This study was focused on acoustic scattering characteristics of jack mackerel (Trachurus japonicus) at frequency 38, 70, and 120 kHz by Kirchhoff-ray mode (KRM) model. The body length (BL) of 16 individuals ranged in 12.2~22.0 cm ($mean{\pm}S.D.$: $17.8{\pm}3.2cm$) and the swimbladder length ranged in 4.2~8.6 cm ($mean{\pm}S.D.$: $6.6{\pm}1.6cm$) and the swimbladder cross section ranged in $1.7{\sim}6.6cm^2$ ($mean{\pm}S.D.$: $3.8{\pm}1.6cm^2$). This result shows that results correlate well between the BL and the length and cross section of swimbladder. The swimbladder angle ranged in $7{\sim}12^{\circ}$ and the maximum TS values ranged in $-16{\sim}-5^{\circ}$ at tilt angle. The averaged TS-to-BL relationship were $TS_{38kHz}=20{\log}_{10}BL-65.33$ ($R^2=0.66$), $TS_{70kHz}=20{\log}_{10}BL-65.90$ ($R^2=0.67$), and $TS_{120kHz}=20{\log}_{10}BL-66.65$ ($R^2=0.65$). These results can be used fundamental data in order to estimate distribution and biomass of jack mackerel by using hydro-acoustic method.

부레를 가진 어류의 음향산란 강도에 관한 연구: 참돔의 길이 및 행동에 따른 산란강도 (Study on the Backscattered Signal of Swimbladdred Fish: Target Strength due to Length and Behavior of Red Seabream (Pagrus Major))

  • 강돈혁;황두진;나정열;김수암
    • 한국음향학회지
    • /
    • 제20권5호
    • /
    • pp.100-109
    • /
    • 2001
  • 부레를 가진 어류의 산란 강도를 조사하기 위하여 길이가 다른 참돔 (red seabream, pagrus major)을 이용한 음향 실험을 실시하였다. 대상 어류를 살아 있는 상태로 - (1) 망 내에 각각 넣은 후, (2) 자유 유영 상태로 놓은후 - 3개의 음향센서 (38, 120, 200kHz)를 이용하여 길이에 따른 산란강도를 측정하였다. 실험 결과 길이에 따른 참돔의 산란 강도는 각 주파수별로 TS/sub 38㎑/=20 log/sub 10(l)/ -66.41, TS/sub 120㎑/=20 log/sub lo(1)/ -71.80, TS/sub 200㎑/=20 log/sub 10(1)/ -73.94로 나타났다. 실험 결과와 이론 모델을 비교하기 위하여 어류의 형태를 근거로 한 Helmholtz-Kirchhoff 음선 근사법을 사용한 결과, 산란강도는 어류 몸체보다는 부레에 의한 효과가 95%이상으로 나타났다. 한편, 수신된 산란강도 자료를 이용한 확률밀도 함수로부터 어류의 행태에 따른 산란강도 변위는 망 내의 산란체에서는 가우스 확률밀도함수 (Gaussian PDF)로, 자유 유영 상태에서는 레일리 확률밀도함수 (Rayleigh PDF) 특성을 나타냈다.

  • PDF

주파수 70 kHz를 이용한 청어의 유영자세각과 체장에 따른 초음파산란강도의 변동 (Variation of target strength by swimming orientation and size for Pacific herring (Clupea pallasii) at the frequency of 70-kHz)

  • 박미선;윤은아;황강석;이동길;오우석;이경훈
    • 수산해양기술연구
    • /
    • 제53권4호
    • /
    • pp.396-403
    • /
    • 2017
  • We measured the target strength according to the swimming tilt angle and size change for Pacific herring at the frequency of 70 kHz as the basic database in order to estimate its abundance as well as density in the survey area using the hydroacoustical method. The number of the sample used in this study was 14 individuals, and its size distribution by fork length ranged between 20.3 and 29.8 cm and wet weight was measured between 187.6 and 269.9 g. The variation of TS according to the swimming angle ($-30{\sim}30^{\circ}$) was measured between 10.3 and 18.8 dB in frequency range, the highest value was measured at head-down of Pacific herring in the tilt angle range between 5 and 9 deg. of its swimbladder. The relationship between TS-FL of herring was the same as $TS=20log_{10}$ (FL) - 66.79 when its swimming tilt angle in the daytime ($3.8{\pm}6.0^{\circ}$) and nighttime ($-3.2{\pm}13.6^{\circ}$), respectively.

음향에 의한 어족생물의 자원조사 연구 - I - 어군반사강도의 추정 - (Fish Stock Assessment by Hydroacoustic Methods and its Applications - I - Estimation of Fish School Target Strength -)

  • 이대재;신형일;신형호
    • 수산해양기술연구
    • /
    • 제31권2호
    • /
    • pp.142-152
    • /
    • 1995
  • 우리나라 연근해 해역에 대한 어족생물의 자원평가 및 그 관리를 위한 기초자료를 수집하기 위한 연구의 일환으로 동중국해를 대상으로 계량어군탐지기 및 트롤조업에 의해 수집된 어족생물의 음향학적 조사자료 및 수조실험자료 등을 종합적으로 분석하여 조사대상해역에 대한 어족생물의 어군반사강도를 추정한 결과를 요약하면 다음과 같다. 1. 1994년 4월에 제주도 남서방 해역에서 50kHz의 주파수에 대하여 측정한 트롤 예망층에 대한 어군의 평균체적산란강도(, dB)와 그 때의 트롤조업에 의해 어획한 단위체적당의 어획량(C, $kg/\textrm{m}^3$)과의 사이에는 다음의 회귀직선식을 얻었다. = -32.4+10Log(C) 이 식에서 어획물 1kg당에 대한 어군의 평균반사강도의 추정치는 = - 32.4dB/kg이었다. 2. 1989~1992년의 11월중에 동중국해에서 25kHz와 100kHz의 주파수에 대한 트롤 예망층의 평균체적산란강도(, dB)와 단위체적당의 어획량(C, $kg/\textrm{m}^3$)과의 사이에는 다음의 회귀직선식을 얻었다. 25kHz : = - 29.8+10Log(C) 100kHz : = - 31.7+10Log(C) 이들 식에서 25kHz와 100kHz의 주파수에 대한 어획물 1kg당에 대한 어군의 평균반사강도의 추정치는 각각 -29.8dB/kg, -3.7dB/kg으로서, 25kHz에 대한 어군반사강도의 값이 100kHz에 대한 그 값보다 1.9dB 더 컸다. 3. 트롤조업에 의해 어획한 강달이, 말쥐치, 갈전갱이, 민태, 병어, 황돔, 민어, 고등어, 샛돔, 전갱이 등을 대상으로 25kHz와 100kHz의 주파수에서 측정한 어체의 평균반사강도와 체중과의 사이에는 다음의 회귀직선식을 얻었다. 25kHz : TS = - 34.0+10Log($W^{\frac{2}{3}}$) 100kHz : TS = - 37.8+10Log($W^{\frac{2}{3}}$) 이들 식에서 25 kHz와 100kHz의 주파수에 대한 어체의 1kg 당에 대한 평균반사강도의 측정치는 각각 -34.0dB/kg, -37.8dB/kg로서, 25kHz에 대한 어체의 평균반사강도의 값이 100kHz에 대한 그 값보다 3.8dB 더 컸다. 4. 제주도 근해에서 어획한 보구치의 부레의 등가반경(A)에 대한 체장(L)의 비솔(A/L)는 체장이 증감함에 따라 약간 감소하는 경향을 보였고, 그 평균치은 0.089이었다. 이상의 트롤조업 및 어탐조사, 또한 실험수조에서 측정한 어체의 반사강도를 종합적으로 고찰 할 때, 동중국해의 어업자원을 평가함에 있어 적용 할 수 있는 어군 1kg당에 대한 평균적인 반사강도는 25kHz와 100kHz의 주파수에 대하여 각각 -31.4dB/kg, -33.8dB/kg이라고 추정된다.

  • PDF

어류 부레의 형태학적 차이에 따른 음향산란강도의 자세 및 주파수 의존성의 변화 (Changes in the Orientation and Frequency Dependence of Target Strength due to Morphological Differences in the Fish Swim Bladder)

  • 이대재
    • 한국수산과학회지
    • /
    • 제48권2호
    • /
    • pp.233-243
    • /
    • 2015
  • Controlled broadband acoustic scattering laboratory experiments were conducted using a linear chirp signal (95-220 kHz), and x-ray images of live and model fish with an artificial swim bladder were analyzed to investigate the changes in orientation and frequency dependence of target strength (TS) due to morphological differences in fish swim bladders. The broadband echoes from live and model fish were measured over an orientation angle range of ${\pm}45^{\circ}$ in the dorsal plane and in approximately $1^{\circ}$ increments. The location of nulls in the simulated echo response of the SINC [sinc function] model was overlaid on the TS map, showing the orientation and frequency dependence of fish TS, and they matched very well. It was possible to infer the equivalent fish scattering size (or swim bladder) using the null spacing in the experimentally obtained broadband TS map. Good agreement was observed for inferring the equivalent scattering size between the SINC model and the broadband echoes measured for the three fish species (black scraper Thamnaconus modestus; goldeye rockfish Sebastes thompsoni; and whitesaddled reef fish Chromis notatus). Some results of this inference are discussed.

KRM 모델을 이용한 고등어(Scomber japonicus)의 음향산란특성 규명 (Acoustic scattering characteristics of chub mackerel (Scomber japonicus) by KRM model)

  • 박근창;오우석;오선영;이경훈
    • 수산해양기술연구
    • /
    • 제58권1호
    • /
    • pp.32-38
    • /
    • 2022
  • In this study, Target strength for multi-frequency (38 kHz, 70 kHz, 120 kHz and 200 kHz) of chub mackerel (Scomber japonicus) was estimated using by the KRM model. The body shape of the Chub mackerel was described by an X-ray system and the body length of 20 individuals ranged from 16 cm to 28 cm. The swimbladder tilt angle ranged between -8 and -14°, the maximum TS value according to the swimming angle of chub mackerel was -33.0 dB at -11°. The averaged TScm according to fork length was -66.02 dB at 38 kHz, -66.50 dB at 70 kHz, -66.00 dB at 120 kHz and -67.35 dB at 200kHz, respectively.

도루묵의 체내 임피던스 및 유영자세각 평가 (Estimation of swimming angle and body impedance of sandfish (Arctoscopus japonicus))

  • 윤은아;황두진;오우석;이형빈;이경훈
    • 수산해양기술연구
    • /
    • 제58권2호
    • /
    • pp.121-129
    • /
    • 2022
  • Density and sound speed contrasts (g and h, respectively), and swimming angle were measured for sandfish (Arctoscopus japonicus) without swimbladder. The density contrast was measured by the volume displacement method while the sound speed contrast was measured by the acoustic measurements of travel time (time-of-flight method). The swimming angle was measured by dividing it into daytime, nighttime, daytime feeding and nighttime feeding. The g was 1.001 to 1.067 with an average (± standard deviation) of 1.032 (± 0.017), and the h was 1.007 to 1.022 with an average (± standard deviation) of 1.015 (± 0.003). The swimming angles (mean ± standard deviation) were 16.8 ± 10.3° during the daytime, 1.9 ± 12.3° during the nighttime, 30.2 ± 12.6° in the daytime feeding and 35.0 ± 13.2° in the nighttime feeding. These results will provide important parameters input to calculate theoretical scattering models for estimating the acoustic target strength of sandfish.