• Title/Summary/Keyword: Swash Plate Type Axial Piston Pump

Search Result 36, Processing Time 0.027 seconds

A Kinematic Analysis on Piston Rod Mechanism in Swashplate Type Hydraulic Axial Piston Motor/Pump Using Constant Velocity Joint (등속조인트를 적용한 사판식 유압 모터/점프의 로드형 피스톤에 대한 운동해석)

  • Kim K.H.;Kim S.D.;Ham Y.B.;Lee J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, swash plate type hydraulic axial piston motors/pumps are being extensively used in the world, because of simple design, light weight and effective cost. Structural problem of the swash plate type motor/pump is that tilting angle of swash plate should be limited to relatively small value and lateral farce on pistons has an undesirable effect in reciprocating motion. To solve these problems, piston rod mechanism, which is commonly used in bent axis type motor/pump, is considered to be applied to the swash plate type motor/pump. In this paper, kinematic analysis was done on the piston rod mechanism. A series of formula were derived and numerical calculations were done for a set of motor parameters.

  • PDF

Theoretical Analysis of the Slipper Hydrostatic Bearing Shape in the Swash Plate Type Axial Piston Pump (사판식 유압 피스톤 펌프의 슬리퍼 정압베어링면 형상에 관한 이론해석)

  • Cho, I.S.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • In the high rotational speed and pressure state, the leakage flow rate of the axial piston pump is one of the serious problems and make great reasons to decrease the volume efficiency. In this study, tribology characteristics is clarified for the hydrostatic slipper bearing in the swash plate type axial piston pump, by means of theoretical analysis for the different shape of the hydrostatic slipper bearing. It was analyzed by Mathcad software and used equal conditions at $0^{\circ}$ swash plate angle in each model. The results show that performance characteristics of the swash plate type axial piston pump are significantly influenced by the shape of the hydrostatic slipper bearing.

Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump (사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구)

  • Kim, Jeong-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

A Study on Identification of Open Area of Pump for Hydraulic Excavator (유압 굴삭기용 펌프의 개구면적 규명에 관한 연구)

  • Lim T.H.;Oh B.S.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.101-102
    • /
    • 2006
  • The purpose of this paper is pulsation-analysis of the swash plate type axial piston pump for excavator and the method of side branch hose application, which is used normally in construction equipments. In this paper, draw the mathematical modeling for pressure pulsation mechanism of the swash plate type axial piston pump for excavator, expression the flow pulsation in the pipelines by transfer matrix method, programmed simulation for pulsation by AMEsim software, and the reliability of that was verified by the comparison with the experimental results.

  • PDF

Analysis of Pulsating Flow in a Swash Plate Type Piston Pump and Transmission Line (사판식 피스톤 펌프-관로계에서의 맥동류 해석)

  • Choi, Young-Hak;Lee, Ill-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.45-49
    • /
    • 2000
  • Vibration and noise problem in a hydraulic system became one of very important factors in evaluating the performance of a hydraulic system. It is known that vibration and noise in a hydraulic system is directly related to flow pulsation in the hydraulic pump in the system. This study investigated a modeling and simulation technique for pulsating flow in a swash plate type axial piston pump. The key design factors of the pump related to flow pulsation phenomenon of the pump are the physical parameters for notches on the valve plate of the pump. By the numerical analysis, effects of the physical parameters of the notch on the flow pulsation was elucidated.

  • PDF

Modeling and Robust Controller Design of a Swash Plate for Swash Plate Type Variable Displacement Axial Piston Pump (가변용량형 사판식 액셜피스톤 펌프의 모델링 및 사판 강인 제어기 설계)

  • Park, Sung-Hwan;Park, Yong-Ho;Lee, Ji-Min;Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.75-81
    • /
    • 2008
  • A robust controller is proposed for regulating effectively the pressure of control cylinder of swash plate type variable displacement axial piston pump. In order to design a precise and robust pressure control system, a mathematical model for swash plate control system is identified by the signal compression method. Based on the identified mathematical model, an $H_{\infty}$ robust swash plate controller is designed which is robust to the variation of the load pressure. The precise and robust swash plate control characteristics are verified by experiments.

A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(2) (피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동, 소음에 미치는 영향에 관한 연구(2))

  • Park, Sung-Hwan;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.31-39
    • /
    • 1999
  • Previous researches and experiments have already verified that the primary noise source of high pressure tandem axial thpe piston pump is fluid-borne noise from the process of oil distribution between the kidney-shaped port and valve plate. So, many researchers have improved pressure gradients and reduced sound levels by applying pre-compression and pre-decompression metering grooves to valve plate. In practice however, the sound level of th high pressure tandem axial type piston pump is still undesirable. This paper testified the effect of pumping phase of the piston on vibration and noise of th high pressure tandem axial type piston pump on the best of theoretical research in $this^(1)$. Therefore considering the pumping phase of the piston when assembling the tandem axial type piston pump, it is possible to reduce 1.5~2[dB]of sound level.

  • PDF

System Modeling of a Bi-directional Outlet Variable Swash Plate Type Axial Piston Pump with Two EPPR Valves (두 개의 EPPR 밸브가 적용된 정/역 가변형 사판식 액셜 피스톤 펌프 시스템 모델링)

  • Kim, Yong-Gil;Kim, Soo-Tae;Ham, Young-Bog;Yun, So-Nam;Son, Ho-Yeon
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • This study addresses the modeling of a bi-directional outlet variable swash plate type axial piston pump with two EPPR valves and an analysis of the response characteristics to the angle control of that pump. In this paper, the combination of the EPPR valve and double rod type piston is referred to as the EPPR regulator. The EPPR regulator is compact and inexpensive, and has good responsiveness. Under actual pump operating conditions, because of the various external conditions of the pump, inertia is applied to the swash plate, generating the tilting torque. Also, the tilting torque can delay or shorten the response characteristics of the regulator. So we validated them through the analysis using SimulationX and these results allow users to freely integrate the EPPR regulator into the desired system.

Flow Analysis in a Slipper Bearing for Swash Plate Type Axial Piston Pump (사판식 유압 피스톤 펌프용 Slipper Bearing내의 유동해석)

  • Park, Tae-Jo;Yoo, Jae-Chan
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.343-348
    • /
    • 2008
  • In this paper, a CFD (Computational fluid dynamics) code, FLUENT is adopted to investigate accurate flow characteristics for a slipper bearing which is used swash plate type hydraulic axial piston pump. Static pressure and velocity distributions, and velocity vectors are plotted for different film thickness and slipper rotational velocity. In recess region, there exists a doughnut shaped vortex ring. The static pressure distributions are non-uniform and the flow fields are highly asymmetrical under bearing rotation. Therefore the numerical method adopted in this paper can be use in design of hydrostatic components and further studies are required.