• Title/Summary/Keyword: Swarming Flight

Search Result 4, Processing Time 0.017 seconds

Designing of Dynamic Sensor Networks based on Meter-range Swarming Flight Type Air Nodes

  • Kang, Chul-Gyu;Kim, Dae-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.625-628
    • /
    • 2011
  • Dynamic sensor network(DSN) technology which is based on swarming flight type air node offers analyzed and acquired information on target data gathered by air nodes in rotation flight or 3 dimension array flight. Efficient operation of dynamic sensor network based on air node is possible when problems of processing time, data transmission reliability, power consumption and intermittent connectivity are solved. Delay tolerant network (DTN) can be a desirable alternative to solve those problems. DTN using store-and-forward message switching technology is a solution to intermittent network connectivity, long and variable delay time, asymmetric data rates, and high error rates. However, all processes are performed at the bundle layer, so high power consumption, long processing time, and repeated reliability technique occur. DSN based on swarming flight type air node need to adopt store-and-forward message switching technique of DTN, the cancelation scheme of repeated reliability technique, fast processing time with simplified layer composition.

UAV Swarm Flight Control System Design Using Potential Functions and Sliding Mode Control (포텐셜 함수와 슬라이딩 모드 제어기법을 이용한 무인기 군집비행 제어기 설계)

  • Han, Ki-Hoon;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.448-454
    • /
    • 2008
  • This paper deals with a behavior based decentralized control strategy for UAV swarming utilizing the artificial potential functions and the sliding mode control technique. Individual interactions for swarming behavior are modeled using the artificial potential functions. The motion of individual UAV is directed toward the negative gradient of the combined potential. For tracking the reference trajectory of UAV swarming, a swarming center is considered as the object of control. The sliding-mode control technique is adopted to make the proposed swarm control strategy robust with respect to the system uncertainties and the varying mission environment. Numerical simulation is performed to verify the performance of the proposed controller.

An Illegal Drone Tracking Scheme Using Swarming Flight (군집 비행을 이용한 불법 드론 추적 기법)

  • Kim, Ryun-Woo;Song, Hong-Jong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.943-948
    • /
    • 2022
  • Drones have been widely used in various fields due to the rapid development of done-related technologies, which causes various problems. The schemes which can track target drones by using signal transmitted by target drones have been investigated as a key technology for anti-drone systems to solve these problems. In this paper, we investigate an illegal drone tracking system based on swarming flight that consists of multiple small drones in order to resolve the limitations of a conventional system that consists of a single drone. In addition, we also propose a scheme with which we can adaptively adjust the separation distance between small drones in a swarm according to channel situations. We analyzed the performance of the proposed scheme in terms of success ratio and the number of movements. The proposed scheme can improve the success ratio and the number of movements by 170% and 63% respectively, compared to the conventional scheme.

Collision Avoidance Maneuver Design for the Multiple Indoor UAV by using AR. Drone (AR. Drone을 이용한 실내 군집비행용 충돌회피 기동 설계)

  • Cho, Dong-Hyun;Moon, Sung Tae;Jang, Jong Tai;Rew, Dong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.752-761
    • /
    • 2014
  • With increasing of interest in quad-rotor which has excellent maneuverability recently, a various types of multi-rotor aircraft was developed and commercialized, and there are many kinds of leisure products to be easily operated. In these products, the AR.Drone manufactured by Parrot has an advantage that it is easily operated by user due to the its internal stabilization loop in the on-board computer. Thus it is possible to design the unmanned UAV system easily by using this AR.Drone and its inner loop for the stabilization. For this advantage, KARI(Korea Aerospace Research Institute) has been developing the indoor swarming flight system by using multiple AR.Drones. For this indoor swarming flight, it is necessary that not only the position controller for each AR.Drone, but also the collision avoidance algorithm. Therefore, in this paper, the collision avoidance controller is provided for the swarm flight by using these AR.Drones.