• 제목/요약/키워드: Swarm robots

검색결과 73건 처리시간 0.029초

콘크리트 크랙 탐색 및 실링을 위한 다수의 자율주행로봇 (Mobile Robots for the Concrete Crack Search and Sealing)

  • 진성훈;조철주;임계영
    • 로봇학회논문지
    • /
    • 제11권2호
    • /
    • pp.60-72
    • /
    • 2016
  • This study proposes a multi-robot system, using multiple autonomous robots, to explore concrete structures and assist in their maintenance by sealing any cracks present in the structure. The proposed system employed a new self-localization method that is essential for autonomous robots, along with a visualization system to recognize the external environment and to detect and explore cracks efficiently. Moreover, more efficient crack search in an unknown environment became possible by arranging the robots into search areas divided depending on the surrounding situations. Operations with increased efficiency were also realized by overcoming the disadvantages of the infeasible logical behavioral model design with only six basic behavioral strategies based on distributed control-one of the methods to control swarm robots. Finally, this study investigated the efficiency of the proposed multi-robot system via basic sensor testing and simulation.

인공 면역계 기반 자율분산로봇 시스템의 협조 전략과 군행동 (Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems Based on Artificial Immune System)

  • 심귀보;이동욱;선상준
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1079-1085
    • /
    • 2000
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

PSO를 이용한 이족보행로봇의 보행 계획 (Footstep Planning of Biped Robot Using Particle Swarm Optimization)

  • 김승석;김용태
    • 한국지능시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.566-571
    • /
    • 2008
  • 본 논문에서는 Particle Swarm Optimization(PSO) 기법을 이용한 이족보행로봇의 보행 계획 방법을 제안한다. 이족보행로봇의 보행 프리미티브를 기반으로 PSO의 학습 및 군집 특성을 이용하여 장애물이 있는 2차원 작업공간에서 보행 계획 방법을 설계하였다. 먼저 PSO의 탐색알고리즘을 사용하여 장애물을 회피하는 실행 가능한 보행 프리미티브들의 순서를 찾아서 보행 경로를 생성하고, 탐색된 경로를 바탕으로 보행 걸음수와 이동 거리를 최적화 하는 경로 최적화 알고리즘을 제안하였다. 제안된 보행 계획방법은 다양한 구성의 장애물을 포함한 작업환경에서 모의실험을 통하여 발걸음 탐색 시간이 줄고 최적화된 보행 경로를 생성하는 것을 검증하였다.

미지의 환경에서 트리구조를 이용한 군집로봇의 분산 탐색 (Distributed Search of Swarm Robots Using Tree Structure in Unknown Environment)

  • 이기수;주영훈
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.285-292
    • /
    • 2018
  • In this paper, we propose a distributed search of a cluster robot using tree structure in an unknown environment. In the proposed method, the cluster robot divides the unknown environment into 4 regions by using the LRF (Laser Range Finder) sensor information and divides the maximum detection distance into 4 regions, and detects feature points of the obstacle. Also, we define the detected feature points as Voronoi Generators of the Voronoi Diagram and apply the Voronoi diagram. The Voronoi Space, the Voronoi Partition, and the Voronoi Vertex, components of Voronoi, are created. The generated Voronoi partition is the path of the robot. Voronoi vertices are defined as each node and consist of the proposed tree structure. The root of the tree is the starting point, and the node with the least significant bit and no children is the target point. Finally, we demonstrate the superiority of the proposed method through several simulations.

멀티 스케일 다중 전개형 협업 로봇을 위한 요소 기술 개발 (Development Fundamental Technologies for the Multi-Scale Mass-Deployable Cooperative Robots)

  • 주종남;김한;김정률;송성혁;고제성;허승주;하창수;김종원;안성훈;조규진;홍성수;이동준
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.11-17
    • /
    • 2013
  • 'Multi-scale mass-deployable cooperative robots' is a next generation robotics paradigm where a large number of robots that vary in size cooperate in a hierarchical fashion to collect information in various environments. While this paradigm can exhibit the effective solution for exploration of the wide area consisting of various types of terrain, its technical maturity is still in its infant state and many technical hurdles should be resolved to realize this paradigm. In this paper, we propose to develop new design and manufacturing methodologies for the multi-scale mass-deployable cooperative robots. In doing so, we present various fundamental technologies in four different research fields. (1) Adaptable design methods consist of compliant mechanisms and hierarchical structures which provide robots with a unified way to overcome various and irregular terrains. (2) Soft composite materials realize the compliancy in these structures. (3) Multi-scale integrative manufacturing techniques are convergence of traditional methods for producing various sized robots assembled by such materials. Finally, (4) the control and communication techniques for the massive swarm robot systems enable multiple functionally simple robots to accomplish the complex job by effective job distribution.

군집 로봇의 협조 행동을 위한 로봇 개체의 행동학습과 진화 (Behavior Learning and Evolution of Individual Robot for Cooperative Behavior of Swarm Robot System)

  • 심귀보;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.131-137
    • /
    • 2006
  • 군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다. 이를 위하여 본 논문에서는 지연된 보상능력이 있는 강화학습과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화방법을 제안한다. 지연 보상능력이 있는 강화학습은 로봇이 취한 행동에 대하여 즉각적인 보상을 가할 수 없는 경우에도 학습이 가능한 방법이다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 강화학습의 특성을 이용한 선택 교배방법을 채택하였다. 제안된 방법은 협조탐색 문제에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 검증한다.

군집 로봇의 협조 행동을 위한 강화 학습 기반의 진화 및 학습 알고리즘 (Reinforcement Learning Based Evolution and Learning Algorithm for Cooperative Behavior of Swarm Robot System)

  • 서상욱;김호덕;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.591-597
    • /
    • 2007
  • 군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다 이를 위하여 본 논문에서는 새로운 Polygon 기반의 Q-learning 알고리즘과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화방법을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 강화학습의 특성을 이용한 선택 교배방법을 채택하였다. 제안된 방법은 협조탐색 문제에 적용하여 컴퓨터 모의실험을 통하여 그 유효성을 검증한다.

12각형 기반의 Q-learning과 SVM을 이용한 군집로봇의 목표물 추적 알고리즘 (Object tracking algorithm of Swarm Robot System for using SVM and Dodecagon based Q-learning)

  • 서상욱;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.291-296
    • /
    • 2008
  • 본 논문에서는 군집로봇시스템에서 목표물 추적을 위하여 SVM을 이용한 12각형 기반의 Q-learning 알고리즘을 제안한다. 제안한 알고리즘의 유효성을 보이기 위해 본 논문에서는 여러 대의 로봇과 장애물 그리고 하나의 목표물로 정하고, 각각의 로봇이 숨겨진 목표물을 찾아내는 실험을 가정하여 무작위, DBAM과 AMAB의 융합 모델, 마지막으로는 본 논문에서 제안한 SVM과 12각형 기반의 Q-learning 알고리즘을 이용하여 실험을 수행하고, 이 3가지 방법을 비교하여 본 논문의 유효성을 검증하였다.

Training of Fuzzy-Neural Network for Voice-Controlled Robot Systems by a Particle Swarm Optimization

  • Watanabe, Keigo;Chatterjee, Amitava;Pulasinghe, Koliya;Jin, Sang-Ho;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1115-1120
    • /
    • 2003
  • The present paper shows the possible development of particle swarm optimization (PSO) based fuzzy-neural networks (FNN) which can be employed as an important building block in real life robot systems, controlled by voice-based commands. The PSO is employed to train the FNNs which can accurately output the crisp control signals for the robot systems, based on fuzzy linguistic spoken language commands, issued by an user. The FNN is also trained to capture the user spoken directive in the context of the present performance of the robot system. Hidden Markov Model (HMM) based automatic speech recognizers are developed, as part of the entire system, so that the system can identify important user directives from the running utterances. The system is successfully employed in a real life situation for motion control of a redundant manipulator.

  • PDF

스웜시스템을 위한 자기조직화의 3D 확장 (Extension of Self-organization for Swarm Systems to Three Dimensions)

  • 김재현;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.489-496
    • /
    • 2010
  • 본 논문은 3D 환경에서의 스웜시스템을 위한 자기조직화 방법을 제시한다. 스웜 시스템의 자기조직화를 위하여 인력과 척력을 이용하는 인공 포텐셜 함수(Artificial Potential Function, 이하 APF)를 사용하였다. 제안된 연구에서는 2D 환경에서 자기조직화를 위해 사용되어왔던 다양한 포텐셜들을 3D 환경에 맞게 확장 설계한다. 지면이나 수면 등의 경계면을 가지는 3D 환경의 특성을 고려하여 지면 포텐셜(Ground Potential)을 제안한다. 지면 포텐셜을 고려하지 않았을 때와 고려할 때의 비교 결과를 통해 지면 포텐셜의 필요성과 효과를 보여준다. 마지막으로, 다양한 시뮬레이션 결과를 통해 3D 환경에서 확장된 인공포텐셜과 그 성질의 효율성을 보여준다.