• Title/Summary/Keyword: Swarm Robots

Search Result 73, Processing Time 0.019 seconds

Behavior Control Algorithm of Swarm Robots to Maintain Network Connectivity (네트워크 연결성 유지를 위한 군집 로봇의 행동 제어 알고리즘)

  • Kim, Jong Seon;Jeong, June Young;Ji, Sang Hoon;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1132-1137
    • /
    • 2013
  • In swarm robot systems, it is vital to maintain network connectivity to ensure cooperative behavior between robots. This paper deals with the behavior control algorithm of the swarm robots for maintaining network connectivity. To do this, we divide swarm robots into search-robots, base-robots, and relay-robots. Using these robots, we propose behavior control algorithm to maintain network connectivity. The behavior control algorithms to maintain network connectivity are proposed for the local path planning using virtual force and global path planning using the Delaunay triangulation, respectively. Finally, we demonstrate the effectiveness and applicability of the proposed method through some simulations.

Distributed Moving Algorithm of Swarm Robots to Enclose an Invader (침입자 포위를 위한 군집 로봇의 분산 이동 알고리즘)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.224-229
    • /
    • 2009
  • When swarm robots exist in the same workspace, first we have to decide robots in order to accomplish some tasks. There have been a lot of works that research how to control robots in cooperation. The interest in using swarm robot systems is due to their unique characteristics such as increasing the adaptability and the flexibility of mission execution. When an invader is discovered, swarm robots have to enclose a invader through a variety of path, expecting invader's move, in order to effective enclose. In this paper, we propose an effective swarm robots enclosing and distributed moving algorithm in a two dimensional map.

Self-Organization of Swarm Robots Based on Color Recognition (컬러 인식에 기반을 둔 스웜 로봇의 자기 조직화 연구)

  • Jung, Hah-Min;Hwang, Young-Gi;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.413-421
    • /
    • 2010
  • In the study, self-organization by color detection is proposed to overcome required constraints for existing self-organization by an external ceiling camera and communication. In the proposed self-organization, each swarm robot can follow its colleague robot and all swarm robots can follow a target by LOS(Line of Sight). The swarm robots follow the moving target by the proposed potential field, avoiding confliction with neighboring robots and obstacles. Finally, all swarm robots are reached by a sight among swarm robots. In this paper, for unicycle robots with non-holonomic constraints instead of point robot with holonomic constraints self-organization is presented, it enhances the possibility of H/W realization.

Formation Motion Control for Swarm Robots (군집 로봇의 포메이션 이동 제어)

  • La, Byoung-Ho;Kim, Sung-Ho;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2147-2151
    • /
    • 2011
  • In this paper, we propose the formation control algorithm for swarm robots. The proposed algorithm uses the artificial potential field(APF) to plan the global path of swarm robots and to control the formation movement. The navigation function generates a global APF for a leader robot to reach a given destination and an avoidance function generates a local APF for follow robots to avoid obstacles. Finally, some simulations show the validity of the proposed method.

Path Planning of Swarm Mobile Robots Using Firefly Algorithm (Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획)

  • Kim, Hue-Chan;Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

Efficient Sweeping Algorithm for Multi-Security Mobile Robots (군집 이동형 사회안전 로봇을 위한 효율적인 수색 알고리즘 개발)

  • Shon, Woong-Hee;Han, Chang-Soo;Ji, Sang-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1686-1691
    • /
    • 2010
  • In this paper, we aim at providing a novel sweeping method for multi-security mobile robots. The sweeping problem of the multi-robots can be modeled as the stick pulling problem in which the swarm robots should sweep unknown terrains in order to remove sticks collaboratively. For the purpose, we define a certain map, what is called stick map. And we suggest how to make swarm robots build up and utilize the map in order to improve the productivity of collaborative removing sticks. Finally, the efficiency of our algorithm is verified with simulation experiments.

Behavior Control Algorithm for Space Search Based on Swarm Robots (군집 로봇 기반 공간 탐색을 위한 행동 제어 알고리즘)

  • Tak, Myung-Hwan;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2152-2156
    • /
    • 2011
  • In this paper, we propose the novel behavior control algorithm by using the efficient searching method based on the characteristic of the swarm robots in unknown space. The proposed method consists of identifying the position and moving state of a robot by the dynamic modelling of a wheel drive vehicle, and planing behavior control rules of the swarm robots based on the sensor range zone. The cooperative search for unknown space is carried out by the proposed behavior control. Finally, some experiments show the effectiveness and the feasibility of the proposed method.

Formation Control Algorithm for Swarm Robots Using Virtual Force (가상의 힘을 이용한 군집 로봇의 대형 제어 알고리즘)

  • Tak, Myung Hwan;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1428-1433
    • /
    • 2014
  • In this paper, we propose the formation control algorithm using the leader-following robots in given space. The proposed method is as follows: First, we plan a path of the leader robot for the obstacle avoidance. After that, we propose the formation control algorithm of the following robots using the position and the orientation angle of the leader robot. Also, we propose method for adjusting the formation of the swarm robots when the following robots detect an obstacles. Finally, we show the effectiveness and feasibility of the proposed method though some simulations.

Indirect Configuration Control of Embedded Swarm System Based on Human-Swarm Interaction (임베디드 군집 시스템의 상호작용 기반 간접적 군집 구성 제어)

  • Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2019
  • Embedded swarm systems consist of a large number of robots that use local control laws based on spatial information nearby environment and adjacent robots. In this paper, we propose a new scheme for indirect swarm configuration in swarm interaction system to adapt the swarm operation according to the desired goal. Also, we provide a method for the operator to observe the state of the swarm, which results in providing appropriate input to the swarm. We analyze the stability properties of the proposed swarm system and show the simulation results.

Energy Efficient Cooperative Foraging Swarm Robots Using Adaptive Behavioral Model (역할 모델의 적응적 전환을 통한 협업 채집 무리 로봇의 에너지 효율 향상)

  • Lee, Jong-Hyun;An, Jin-Ung;Ahn, Chang-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • We can efficiently collect crops or minerals by operating multi-robot foraging. As foraging spaces become wider, control algorithms demand scalability and reliability. Swarm robotics is a state-of-the-art algorithm on wide foraging spaces due to its advantages, such as self-organization, robustness, and flexibility. However, high initial and operating costs are main barriers in performing multi-robot foraging system. In this paper, we propose a novel method to improve the energy efficiency of the system to reduce operating costs. The idea is to employ a new behavior model regarding role division in concert with the search space division.