• Title/Summary/Keyword: Swarm Network

Search Result 180, Processing Time 0.024 seconds

Research of Small Fixed-Wing Swarm UAS (소형 고정익 무인기 군집비행 기술 연구)

  • Myung, Hyunsam;Jeong, Junho;Kim, Dowan;Seo, Nansol;Kim, Yongbin;Lee, Jaemoon;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2021
  • Recently popularized drone technologies have revealed that low-cost small unmanned aerial vehicles(UAVs) can be a significant threat to prevailing power by operating in group or in swarms. Researchers in many countries have tried to utilize integrated swarm unmanned aerial system(SUAS) in the battlefield. Agency for Defense Development also identified four core technologies in developing SUAS: swarm control, swarm network, swarm information, and swarm collaboration, and the authors started researches on swarm control and network technologies in order to be able to operate vehicle platforms as the first stage. This paper introduces design and integration of SUAS consisting of small fixed-wing UAVs, swarm control and network algorithms, a ground control system, and a launcher, with which swarm control and network technologies have been verified by flight tests. 19 fixed-wing UAVs succeeded in swarm flight in the final flight test for the first time as a domestic research.

Optimal Learning of Fuzzy Neural Network Using Particle Swarm Optimization Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.421-426
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Behavior Control Algorithm of Swarm Robots to Maintain Network Connectivity (네트워크 연결성 유지를 위한 군집 로봇의 행동 제어 알고리즘)

  • Kim, Jong Seon;Jeong, June Young;Ji, Sang Hoon;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1132-1137
    • /
    • 2013
  • In swarm robot systems, it is vital to maintain network connectivity to ensure cooperative behavior between robots. This paper deals with the behavior control algorithm of the swarm robots for maintaining network connectivity. To do this, we divide swarm robots into search-robots, base-robots, and relay-robots. Using these robots, we propose behavior control algorithm to maintain network connectivity. The behavior control algorithms to maintain network connectivity are proposed for the local path planning using virtual force and global path planning using the Delaunay triangulation, respectively. Finally, we demonstrate the effectiveness and applicability of the proposed method through some simulations.

Network Selection Algorithm for Heterogeneous Wireless Networks Based on Multi-Objective Discrete Particle Swarm Optimization

  • Zhang, Wenzhu;Kwak, Kyung-Sup;Feng, Chengxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1802-1814
    • /
    • 2012
  • In order to guide users to select the most optimal access network in heterogeneous wireless networks, a network selection algorithm is proposed which is designed based on multi-objective discrete particle swarm optimization (Multi-Objective Discrete Particle Swarm Optimization, MODPSO). The proposed algorithm keeps fast convergence speed and strong adaptability features of the particle swarm optimization. In addition, it updates an elite set to achieve multi-objective decision-making. Meanwhile, a mutation operator is adopted to make the algorithm converge to the global optimal. Simulation results show that compared to the single-objective algorithm, the proposed algorithm can obtain the optimal combination performance and take into account both the network state and the user preferences.

Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs (소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Cho, Seong-Beom;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.

Prolong life-span of WSN using clustering method via swarm intelligence and dynamical threshold control scheme

  • Bao, Kaiyang;Ma, Xiaoyuan;Wei, Jianming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2504-2526
    • /
    • 2016
  • Wireless sensors are always deployed in brutal environments, but as we know, the nodes are powered only by non-replaceable batteries with limited energy. Sending, receiving and transporting information require the supply of energy. The essential problem of wireless sensor network (WSN) is to save energy consumption and prolong network lifetime. This paper presents a new communication protocol for WSN called Dynamical Threshold Control Algorithm with three-parameter Particle Swarm Optimization and Ant Colony Optimization based on residual energy (DPA). We first use the state of WSN to partition the region adaptively. Moreover, a three-parameter of particle swarm optimization (PSO) algorithm is proposed and a new fitness function is obtained. The optimal path among the CHs and Base Station (BS) is obtained by the ant colony optimization (ACO) algorithm based on residual energy. Dynamical threshold control algorithm (DTCA) is introduced when we re-select the CHs. Compared to the results obtained by using APSO, ANT and I-LEACH protocols, our DPA protocol tremendously prolongs the lifecycle of network. We observe 48.3%, 43.0%, and 24.9% more percentages of rounds respectively performed by DPA over APSO, ANT and I-LEACH.

Cancer Prediction Based on Radical Basis Function Neural Network with Particle Swarm Optimization

  • Yan, Xiao-Bo;Xiong, Wei-Qing;Hu, Liang;Zhao, Kuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7775-7780
    • /
    • 2014
  • This paper addresses cancer prediction based on radial basis function neural network optimized by particle swarm optimization. Today, cancer hazard to people is increasing, and it is often difficult to cure cancer. The occurrence of cancer can be predicted by the method of the computer so that people can take timely and effective measures to prevent the occurrence of cancer. In this paper, the occurrence of cancer is predicted by the means of Radial Basis Function Neural Network Optimized by Particle Swarm Optimization. The neural network parameters to be optimized include the weight vector between network hidden layer and output layer, and the threshold of output layer neurons. The experimental data were obtained from the Wisconsin breast cancer database. A total of 12 experiments were done by setting 12 different sets of experimental result reliability. The findings show that the method can improve the accuracy, reliability and stability of cancer prediction greatly and effectively.

Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization (BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측)

  • Punuhsingon, Charles S.C;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.

Enhancement OLSR Routing Protocol using Particle Swarm Optimization (PSO) and Genrtic Algorithm (GA) in MANETS

  • Addanki, Udaya Kumar;Kumar, B. Hemantha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.131-138
    • /
    • 2022
  • A Mobile Ad-hoc Network (MANET) is a collection of moving nodes that communicate and collaborate without relying on a pre-existing infrastructure. In this type of network, nodes can freely move in any direction. Routing in this sort of network has always been problematic because of the mobility of nodes. Most existing protocols use simple routing algorithms and criteria, while another important criterion is path selection. The existing protocols should be optimized to resolve these deficiencies. 'Particle Swarm Optimization (PSO)' is an influenced method as it resembles the social behavior of a flock of birds. Genetic algorithms (GA) are search algorithms that use natural selection and genetic principles. This paper applies these optimization models to the OLSR routing protocol and compares their performances across different metrics and varying node sizes. The experimental analysis shows that the Genetic Algorithm is better compared to PSO. The comparison was carried out with the help of the simulation tool NS2, NAM (Network Animator), and xgraph, which was used to create the graphs from the trace files.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.