• Title/Summary/Keyword: Swarm Intelligence (SI)

Search Result 4, Processing Time 0.018 seconds

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.

RRSEB: A Reliable Routing Scheme For Energy-Balancing Using A Self-Adaptive Method In Wireless Sensor Networks

  • Shamsan Saleh, Ahmed M.;Ali, Borhanuddin Mohd.;Mohamad, Hafizal;Rasid, Mohd Fadlee A.;Ismail, Alyani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1585-1609
    • /
    • 2013
  • Over recent years, enormous amounts of research in wireless sensor networks (WSNs) have been conducted, due to its multifarious applications such as in environmental monitoring, object tracking, disaster management, manufacturing, monitoring and control. In some of WSN applications dependent the energy-efficient and link reliability are demanded. Hence, this paper presents a routing protocol that considers these two criteria. We propose a new mechanism called Reliable Routing Scheme for Energy-Balanced (RRSEB) to reduce the packets dropped during the data communications. It is based on Swarm Intelligence (SI) using the Ant Colony Optimization (ACO) method. The RRSEB is a self-adaptive method to ensure the high routing reliability in WSNs, if the failures occur due to the movement of the sensor nodes or sensor node's energy depletion. This is done by introducing a new method to create alternative paths together with the data routing obtained during the path discovery stage. The goal of this operation is to update and offer new routing information in order to construct the multiple paths resulting in an increased reliability of the sensor network. From the simulation, we have seen that the proposed method shows better results in terms of packet delivery ratio and energy efficiency.

A Survey of Computational Offloading in Cloud/Edge-based Architectures: Strategies, Optimization Models and Challenges

  • Alqarni, Manal M.;Cherif, Asma;Alkayal, Entisar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.952-973
    • /
    • 2021
  • In recent years, mobile devices have become an essential part of daily life. More and more applications are being supported by mobile devices thanks to edge computing, which represents an emergent architecture that provides computing, storage, and networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded to edge nodes to alleviate the computations on the mobile side. However, offloading computational tasks may incur extra energy consumption and delays due to network congestion and server queues. Therefore, it is necessary to optimize offloading decisions to minimize time, energy, and payment costs. In this article, different offloading models are examined to identify the offloading parameters that need to be optimized. The paper investigates and compares several optimization techniques used to optimize offloading decisions, specifically Swarm Intelligence (SI) models, since they are best suited to the distributed aspect of edge computing. Furthermore, based on the literature review, this study concludes that a Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for balancing energy consumption, time, and cost.

AVK based Cryptosystem and Recent Directions Towards Cryptanalysis

  • Prajapat, Shaligram;Sharma, Ashok;Thakur, Ramjeevan Singh
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.97-110
    • /
    • 2016
  • Cryptanalysis is very important step for auditing and checking strength of any cryptosystem. Some of these cryptosystem ensures confidentiality and security of large information exchange from source to destination using symmetric key cryptography. The cryptanalyst investigates the strengths and identifies weakness key as well as enciphering algorithm. With increase in key size the time and effort required to guess the correct key increases so trend is increase key size from 8, 16, 24, 32, 56, 64, 128 and 256 bits to strengthen the cryptosystem and thus algorithm continues without compromise on the cost of time and computation. Automatic Variable Key (AVK) approach is an alternative to the approach of fixing up key size and adding security level with key variability adds new dimension in the development of secure cryptosystem. Likewise, whenever any new cryptographic method is invented to replace per-existing vulnerable cryptographic method, its deep analysis from all perspectives (Hacker / Cryptanalyst as well as User) is desirable and proper study and evaluation of its performance is must. This work investigates AVK based cryptic techniques, in future to exploit benefits of advances in computational methods like ANN, GA, SI etc. These techniques for cryptanalysis are changing drastically to reduce cryptographic complexity. In this paper a detailed survey and direction of development work has been conducted. The work compares these new methods with state of art approaches and presents future scope and direction from the cryptic mining perspectives.