On modern operating systems such as Linux, virtual memory is a general way to provide a large address space to applications by using main memory and storage devices. Recently, storage devices have been improved in terms of latency and bandwidth, and it is expected that applications with large memory show high-performance if next-generation storage devices are considered. However, due to the overhead of virtual memory subsystem, the paging system can not exploit the performance of next-generation storage devices. In this study, we propose several optimization techniques to extend memory with next-generation storage devices. The techniques are to allocate block addresses of storage devices for write-back operations as well as to configure the system parameters, and we implement the techniques on Linux 3.14.3. Our evaluation through using multiple benchmarks shows that our system has 3 times (/24%) better performance on average than the baseline system in the micro(/macro)-benchmark.
Journal of Korean Society of Industrial and Systems Engineering
/
v.33
no.2
/
pp.48-55
/
2010
Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.5
/
pp.151-158
/
2023
The researchers entirely focused on meta-heuristic method for generalized assignment problem(GAP) that is known as NP-hard problem because of the optimal solution within polynomial time algorithm is unknown yet. On the other hand, this paper proposes a heuristic greedy algorithm with rules for finding solutions. Firstly, this paper reduces the weight matrix of original data to wij ≤ bi/l in order to n jobs(items) pack m machines(bins) with l = n/m. The maximum profit of each job was assigned to the machine for the reduced data. Secondly, the allocation was adjusted so that the sum of the weights assigned to each machine did not exceed the machine capacity. Finally, the k-opt swap optimization was performed to maximize the profit. The proposed algorithm is applied to 50 benchmarking data, and the best known solution for about 1/3 data is to solve the problem. The remaining 2/3 data showed comparable results to metaheuristic techniques. Therefore, the proposed algorithm shows the possibility that rules for finding solutions in polynomial time exist for GAP. Experiments demonstrate that it can be a P-problem from an NP-hard.
Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.1
/
pp.253-262
/
2016
This paper proposes a balance-swap method for the dynamic economic load dispatch problem. Based on the premise that all generators shall be operated at valve-points, the proposed algorithm initially sets the maximum generation power at $P_i{\leftarrow}P_i^{max}$. As for generator i with $_{max}c_i$, which is the maximum operating cost $c_i=\frac{F(P_i)-F(P_{iv_k})}{(P_i-P_{iv_k})}$ produced when the generation power of each generator is reduced to the valve-point $v_k$, the algorithm reduces i's generation power down to $P_{iv_k}$, the valve-point operating cost. When ${\Sigma}P_i-P_d$ > 0, it reduces the generation power of a generator with $_{max}c_i$ of $c_i=F(P_i)-F(P_i-1)$ to $P_i{\leftarrow}P_i-1$ so as to restore the equilibrium ${\Sigma}P_i=P_d$. The algorithm subsequently optimizes by employing an adult-step method in which power in the range of $_{min}\{_{max}(P_i-P_i^{min}),\;_{max}(P_i^{max}-P_i)\}$>${\alpha}{\geq}10$ is reduced by 10; a baby step method in which power in the range of 10>${\alpha}{\geq}1$ is reduced by 1; and a swap method for $_{max}[F(P_i)-F(P_i-{\alpha})]$>$_{min}[F(P_j+{\alpha})-F(P_j)]$, $i{\neq}j$ of $P_i=P_i{\pm}{\alpha}$, in which power is swapped to $P_i=P_i-{\alpha}$, $P_j=P_j+{\alpha}$. It finally executes minute swap process for ${\alpha}=\text{0.1, 0.01, 0.001, 0.0001}$. When applied to various experimental cases of the dynamic economic load dispatch problems, the proposed algorithm has proved to maximize economic benefits by significantly reducing the optimal operating cost of the extant Heuristic algorithm.
Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
Industrial Engineering and Management Systems
/
v.7
no.2
/
pp.171-181
/
2008
Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.
Overlay Multicast is an effective method for efficient utilization of system resources and network bandwidth without a need for hardware customization. Multicast tree reconstruction is required when a non-leaf node leaves or fails. However frequent multicast tree reconstruction introduces serious degradation in performance. In this paper, we propose a tree performance optimization algorithm to solve this defect by using information(RTCP-probing) that becomes a periodic feedback to a source node from each child node. The proposed model is a mechanism performed when a parent node seems to cause deterioration in the tree performance. We have improved the performance of the whole service tree using the mechanism and hence composing an optimization tree. The simulation results show that our proposal stands to be an effective method that can be applied to not only the proposed model but also to existing techniques.
Kim, Kwan-Woo;Mitsuo Gen;Hwang, Rea-Kook;Genji Yamazaki
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.187-190
/
2003
Many manufacturing companies consider the integrated and concurrent scheduling because they need the global optimization technology that could manufacture various products more responsive to customer needs. In this paper, we propose an advanced scheduling model to generate the schedules considering resource constraints and precedence constraints in make-to-order (MTO) manufacturing environments. Precedence of work- in-process(WIP) and resources constraints have recently emerged as one of the main constraints in advanced scheduling problems. The advanced scheduling problems is formulated as a multiobjective mathematical model for generating operation schedules which are obeyed resources constraints, alternative workstations of operations and the precedence constraints of WIP in MTO manufacturing. For effectively solving the advanced scheduling problem, the multi-objective hybrid genetic algorithm (m-hGA) is proposed in this paper. The m-hGA is to minimize the makespan, total flow time of order, and maximum tardiness for each order, simultaneously. The m-hGA approach with local search-based mutation through swap mutation is developed to solve the advanced scheduling problem. Numerical example is tested and presented for advanced scheduling problems with various orders to describe the performance of the proposed m-hGA.
Journal of the Korea Society of Computer and Information
/
v.19
no.10
/
pp.169-173
/
2014
Nobody has yet been able to determine the optimal solution conclusively whether NP-complete problems are in fact solvable in polynomial time. Gu$\acute{e}$ret et al. tries to obtain the optimal solution using linear programming with $O(m^4)$ time complexity for barge loading problem a kind of bin packing problem that is classified as nondeterministic polynomial time (NP)-complete problem. On the other hand, this paper suggests the loading rule of profit priority rank algorithm with O(m log m) time complexity. This paper decides the profit priority rank firstly. Then, we obtain the initial loading result using the rule of loading the good has profit priority order. Finally, we balance the loading and capability of barge swap the goods of unloading in previously loading in case of under loading. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m log m) time complexity for NP-complete barge loading problem.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.6
/
pp.71-76
/
2021
Recently, as the size of IoT data grows, the memory power consumption of real-time systems increases rapidly. This is because real-time systems always place entire tasks in memory, which increases the demand of DRAM significantly. In this paper, we adopt emerging fast storage media and move a certain portion of real-time tasks from DRAM to storage. The part of tasks in storage are, then, loaded into memory when they are actually used. We incorporate our memory/storage power-saving into the dynamic voltage/frequency scaling of processors, thereby optimizing power consumptions in CPU and memory simultaneously. Specifically, the proposed technique aims at minimizing the CPU idle time and the DRAM memory size by determining appropriate voltage modes of CPU and the swap ratio of memory, without violating the deadlines of all tasks. Through simulation experiments, we show that the proposed technique significantly reduces the power consumption of real-time systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.