• Title/Summary/Keyword: Swamp buffalo

Search Result 33, Processing Time 0.021 seconds

Effect of Ruminal NH3-N Levels on Ruminal Fermentation, Purine Derivatives, Digestibility and Rice Straw Intake in Swamp Buffaloes

  • Wanapat, M.;Pimpa, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.904-907
    • /
    • 1999
  • The experiment was aimed at studying the effect of ruminal $NH_3-N$ levels on ruminal fermentation, microbial population, urinary purine derivative excretion, digestibility and rice straw intake in swamp buffaloes. Five, 3 to 4 years old, rumen fistulated swamp buffaloes were randomly assigned according to a $5{\times}5$ Latin square design to rceive five different intraruminal infusions of $NH_4HCO_3$ (0, 150, 300, 450 and 600 g/d) on a continuous daily basis. Rice straw as a roughage was offered ad libitum while concentrate was given at 0.8% BW daily. The results were that as levels of $NH_4HCO_3$ increased, ruminal $NH_3-N$ concentrations increased from 7.1 to 34.4 mg%. The highest digestibility and voluntary straw intakes were found at 13.6 to 17.6 mg% ruminal $NH_3-N$ levels; straw intake was highest at 13.6 mg%. Total bacterial and protozoal counts linearly increased as the ruminal $NH_3-N$ increased and were highest at 17.6 mg%. Total urinary purine derivatives and allantoin excretion were highest (44.0, 37.4 mM/d) at 17.6 mg% ruminal $NH_3-N$. Highest total VFAs (115 mM) were obtained a 13.6 mg% ruminal $NH_3-N$ while blood urea nitrogen significantly increased as ruminal $NH_3-N$ increased. The results from this experiment suggest that optimum ruminal $NH_3-N$ in swamp buffaloes is higher than 13.6 mg%, for improving rumen ecology, microbial protein synthesis, digestibility and straw intake.

STUDIES IN FIBRE DIGESTION AND PASSAGE RATE OF LIQUID AND SOLID IN CATTLE AND BUFFALOES

  • Abdullah, N.;Ho, Y.W.;Mahyuddin, M.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.2
    • /
    • pp.137-141
    • /
    • 1991
  • Rumen liquor characteristics and disappearance rate of dry matter were studied in Kedah-Kelantan cattle and swamp buffaloes fed grass of rice straw-based diet. Cobalt-EDTA and chromium mordented fibres prepared from the faecal material were used to determine the liquid and solid particles movement in both animal species fed with rice straw. Swamp buffaloes showed a more intense rumen fermentation activity than Kedah-Kelantan cattle when both species were fed straw-based diet. The buffaloes also demonstrated faster rates of grass and straw degradation in situ. The fluid outflow rate from the rumen of buffalo ($1.06{\pm}0.19l/h$) was observed to be slower than that of cattle ($1.55{\pm}0.01l/h$). No significant differences between cattle and buffaloes were observed in rumen fluid volume and passage rate of small particles from the rumen.

Nutrient Requirements of Exercising Swamp Buffalo, Bubalus bubalis. II. Details of Work Energy of Cows and Its Relation to Heart Rate

  • Mahardika, I.G.;Sastradipradja, D.;Sutardi, T.;Sumadi, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.1003-1009
    • /
    • 2000
  • Four young swamp buffalo cows of similar age ranging in body weight (W) between 280 to 380 kg and trained for doing physical exercise were used in two consecutive experiments, each using a latin square design, to determine energy expenditure for draught. The experiments consisted of field trials using 4 levels of work load, i.e. no work as control and loads amounting 450 to 500 Newton (N) continuous traction for respectively 1, 2 and 3 h daily for 14 consecutive days for experiment 1, and no work, traction loads equaling 5, 10 and 15% of W for 3 h daily for 14 days for experiment 2. Heart rate during rest and exercise was monitored using PE-3000 HR monitor. Cows were fed only king grass (Penisetum purpuroides) ad libitum and were subjected to balance trials. Body composition was estimated in vivo by the body density method and daily energy expenditure (EE) was calculated from ME minus RE. RE was calculated from the changes in body-protein and -fat measured before and immediately after the 14 d experimental period assuming an energy equivalent of 39.32 MJ/kg fat and 20.07 MJ/kg protein. $E_{exercise}$ ($EE_{work}\;-\;EE_{resting}$), which was the energy spent for doing the traction during 1, 2 and 3 h was 7.13, 15.45 and 19.90 MJ, respectively. $EE_{work}$ for the 1 h treatment group was 39.75 MJ/d equivalent to 1.30 times $EE_{resting}$. The values for the 2 and 3 h treatment groups were 1.75 and 1.86 times resting energy requirement, respectively. Absolute efficiency of work in all exercise trials of experiment 2 was around 27.28%. The increases of daily $E_{exercise}$ values were correlated to elevation of heart rate (HR) according to the equation $E_{exercise}=(0.270HR^{0.363}\;-\;1)$ MJ, while draught force related to heart rate according to the equation DF (N)=6.66 HR - 361.62. Blood glucose and triglyceride levels were gradually elevated with time during the course of exercise. Mean values of blood glucose were 91.7, 115.0 and 116.2 mg/dl for cows after 1, 2 and 3 h pulling loads at 15% W respectively as compared to 88.2 mg/dl prior to work. In the same order and treatment, mean blood triglyceride concentrations were 13.5, 13.3 and 14.8 mg/dl, and 11.5 mg/dl for control. For blood lactate, the values were 1.68, 1.63 and 1.66 mM, and 0.80 mM for control. Glucose was used as the major source of energy during the initial phase of exercise, but for prolonged work, fat will replace carbohydrate as the main substrate. Accumulation of lactate persisted for some time at the end of the exercise trials.

Reproductive Biotechnologies for Improvement of Buffalo: The Current Status

  • Purohit, G.N.;Duggal, G.P.;Dadarwal, D.;Kumar, Dinesh;Yadav, R.C.;Vyas, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1071-1086
    • /
    • 2003
  • Reproductive biotechnologies continue to be developed for genetic improvement of both river and swamp buffalo. Although artificial insemination using frozen semen emerged some decades back, there are still considerable limitations. The major problem appears to be the lack of efficient methods for estrus detection and timely insemination. Controlled breeding experiments in the buffalo had been limited and similar to those applied in cattle. Studies on multiple ovulation and embryo transfer are essentially a replica of those in cattle, however with inherent problems such as lower number of primordial follicles on the buffalo ovary, poor fertility and seasonality of reproduction, lower population of antral follicles at all stages of the estrous cycle, poor endocrine status and a high incidence of deep atresia in ovarian follicles, the response in terms of transferable embryo recovery has remained low with 0.51 to 3.0 per donor and pregnancy rates between 15 to 30%. In vitro production of buffalo embryos is a valid alternative to recovery of embryos by superovulation. This aspect received considerable attention during the past decade, however the proportion of embryos that develops to the blastocyst stage is still around 25-30% and hence the in vitro culture procedures need substantial improvement. Embryo cryopreservation procedures for direct transfer post thaw need to be developed for bubaline embryos. Nuclear transfer and embryo cloning is a technique that has received attention in various species during recent years and can be of immense value in buffaloes as they have a low rate of embryo recoveries by both in vitro and in vivo procedures. Gender pre-selection, genome analysis, gene mapping and gene transfer are a few of the techniques that have been studied to a limited extent during recent years and are likely to be included in future studies on buffaloes. Very recently, reproductive biotechnologies have been applied to feral buffaloes as well, but the results obtained so far are modest. When fully exploited they can play an important role in the preservation of endangered species.

Effect of Ground Corn Cob Replacement for Cassava Chip on Feed Intake, Rumen Fermentation and Urinary Derivatives in Swamp Buffaloes

  • Wanapat, M.;Pilajun, R.;Kang, S.;Setyaningsih, K.;Setyawan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1124-1131
    • /
    • 2012
  • Four Thai - rumen fistulated male swamp buffaloes (Bubalus bubalis), about four years old with $400{\pm}20kg$ liveweight, were randomly assigned according to a $4{\times}4$ Latin square design to receive dietary treatments. The treatments were: ground corn cob (GCC) replacement for cassava chip (CC) in concentrate at 0% (T1); GCC replacement at 33% (T2); GCC replacement at 67% (T3); and GCC replacement at 100% (T4), respectively. During the experiment, concentrate was offered at 0.5% BW while 5% urea-treated rice straw was given at ad libitum. The result revealed that there was no effect of GCC replacement on DMI among treatments. In addition, digestibilities of DM, OM and CP were not different while aNDF linearly increased with an increasing level of GCC replacement. However, GCC replacement did not affect rumen fermentation such as ruminal pH, $NH_3$-N and VFA concentration; except C3 proportion which was the highest at 33% replacement while the lowest was at 100% replacement. All replacements of GCC resulted in similar protozoal and bacterial populations and microbial protein synthesis (MPS). Purine derivatives (PD) concentration in urine and PD to creatinine (PDC) index were varied with time of urination and among treatments at 0 to 8 and 8 to 16 h post feeding and higher values were shown among the GCC replacement groups. However at 16 to 24 h-post feeding, it was untraceable. In addition, creatinine concentration was similar among all treatments at every sampling time. Based on the above results, GCC can be used as an energy source for swamp buffalo fed with rice straw. Spot sampling of urine can be used for purine derivatives determination.

A Comparative Study on the Effect of Cassava Hay Supplementation in Swamp Buffaloes (Bubalus bubalis) and Cattle (Bos indicus)

  • Granum, G.;Wanapat, Metha;Pakdee, P.;Wachirapakorn, C.;Toburan, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1389-1396
    • /
    • 2007
  • Twelve swamp buffaloes and Brahman cattle heifers (6 animals each) were randomly assigned to two treatments, control (grazing only) and supplementation of cassava hay (CH) at 1-kg dry matter per head per day (DM/hd/d), in a $2{\times}2$ factorial arrangement according to a cross-over design. The cassava hay contained a high level of protein (19.5% of DM) and a strategic amount of condensed tannins (4.0% of DM). As a result it was revealed that supplementation of CH at 1-kg DM/hd/d significantly (p<0.05) improved the nutrition of both swamp buffaloes and Brahman cattle in terms of DM, organic matter (OM), protein and energy intake and digestibility, ruminal NH3-N and rumen ecology. Supplementation significantly (p<0.05) reduced weight losses in both species and improved the health, in terms of reduced number of parasite eggs in feces (p<0.05), of both buffaloes and cattle. There tended to be a difference in term of response to CH between the two species. The DM, OM, protein intake and digestibility and total digestible energy intake tended to be higher for buffaloes as compared to cattle. Moreover, the percentage reduction of parasite eggs tended to be higher for buffaloes as compared to cattle (57.6 and 45.0%, respectively). However, there were no significant interactions between species and treatments.

MICROBIAL COLONIZATION AND DIGESTION OF FEED MATERIALS IN CATTLE AND BUFFALOES I. GUINEA GRASS

  • Abdullah, N.;Ho, Y.W.;Mahyuddin, M.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.2
    • /
    • pp.323-327
    • /
    • 1992
  • An experiment was conducted to determine whether there were any apparent differences in the microbial population, colonization pattern and digestion of guinea grass in situ, between cattle and swamp buffalo. Percentage losses in dry matter (DM), nitrogen (N) and neutral detergent fibre (NDF) of guinea grass were significantly (p<0.01) higher when incubated in the rumen of buffalo than in cattle. Buffalo also showed significantly (p<0.05) faster degradation rates than cattle for each grass component (DM, N, DNF). Light microscopy and SEM examination of the incubated grass materials showed that there were no apparent differences in the pattern of bacterial and fungal invasion and colonization of the grass materials between cattle and buffalo. Attachment of bacteria and fungal zoospores on the grass fragments occurred at 15 min after rumen incubation. After 3 h of rumen incubation, dense population of bacteria was observed in the thin-walled mesophyll and parenchyma tissues, whereas root-like fungal rhizoids were observed in both thin-walled and thick-walled cells. By 6 h, eroded zones were apparent in the thin-walled tissues and in thick-walled tissues with profuse rhizoids. After 24. 48 and 72 h of rumen incubation, most thin-walled tissues were degraded leaving mostly the thick-walled tissues. The predominant bacteria were the curved rods resembling Butyrivibrio sp., the thick rods resembling Fibrobacter sp., the diplococcoids resumbling Ruminococcus sp. And spirochetes. Fungi were predominantly those with spherical or oval sporangia. Fusiform sporangia with acuminate apices which resembled Ruminomyces sp. Were of lesser occurrence. Few protozoa were found on the grass fragments at all incubation times.

EFFECTS OF PROLONGED EXPOSURE TO THE SUN ON BODY WATER TURNOVER AND VOLUME OF THE BLOOD IN SWAMP BUFFALOES

  • Chaiyabutr, N.;Buranakarl, C.;Loypetjra, P.;Chanpongsang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1990
  • During prolonged exposure to the sun for 8 h each day for 10 days in which the highest ambient temperature around 14:00 h was $39^{\circ}C$, buffaloes exposed to the sun without shade increased the turnover of body water by 35% and 76% on day 5 and day 10 of exposure respectively. The total body water markedly decreased on day five and this amount was maintained thereafter. Plasma and blood volumes did not change significantly on day five but markedly decreased on day 10. Packed cell volume significantly decreased on day five and day 10 of the exposure period. The reduction of packed cell volume on day 10 coincided with the decrease in total plasma water. On day 10 of the exposure, an increase in the rate of liquid flow from the rumen was noted. It is concluded that on the fifth day of exposure, the increase in the evaporative cooling process was attributed to initial mobilization of water from the intracellular compartment. The reduction of both plasma and cell volumes occurring from day five to day 10 indicated a loss of body water from both intracellular and extracellular compartments.

Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes

  • Thao, N.T.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.951-957
    • /
    • 2015
  • Four rumen fistulated swamp buffaloes were randomly assigned according to a $4{\times}4$ Latin square design to investigate the effects of Eucalyptus (E. Camaldulensis) leaf meal (ELM) supplementation as a rumen enhancer on feed intake and rumen fermentation characteristics. The dietary treatments were as follows: T1 = 0 g ELM/hd/d; T2 = 40 g ELM/hd/d; T3 = 80 g ELM/hd/d; T4 = 120 g ELM/hd/d, respectively. Experimental animals were kept in individual pens and concentrate was offered at 0.3% BW while rice straw was fed ad libitum. The results revealed that voluntary feed intake and digestion coefficients of nutrients were similar among treatments. Ruminal pH, temperature and blood urea nitrogen concentrations were not affected by ELM supplementation; however, ELM supplementation resulted in lower concentration of ruminal ammonia nitrogen. Total volatile fatty acids, propionate concentration increased with the increasing level of EML (p<0.05) while the proportion of acetate was decreased (p<0.05). Methane production was linearly decreased (p<0.05) with the increasing level of ELM supplementation. Protozoa count and proteolytic bacteria population were reduced (p<0.05) while fungal zoospores and total viable bacteria, amylolytic, cellulolytic bacteria were unchanged. In addition, nitrogen utilization and microbial protein synthesis tended to increase by the dietary treatments. Based on the present findings, it is suggested that ELM could modify the rumen fermentation and is potentially used as a rumen enhancer in methane mitigation and rumen fermentation efficiency.

Effects of Eucalyptus Crude Oils Supplementation on Rumen Fermentation, Microorganism and Nutrient Digestibility in Swamp Buffaloes

  • Thao, N.T.;Wanapat, M.;Cherdthong, A.;Kang, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.46-54
    • /
    • 2014
  • This study was conducted to investigate the effects of eucalyptus (E. Camaldulensis) crude oils (EuO) supplementation on voluntary feed intake and rumen fermentation characteristics in swamp buffaloes. Four rumen fistulated swamp buffaloes, body weight (BW) of $420{\pm}15.0$ kg, were randomly assigned according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. The dietary treatments were untreated rice straw (RS) without EuO (T1) and with EuO (T2) supplementation, and 3% urea-treated rice straw (UTRS) without EuO (T3) and with EuO (T4) supplementation. The EuO was supplemented at 2 mL/h/d in respective treatment. Experimental animals were kept in individual pens and concentrate mixture was offered at 3 g/kg BW while roughage was fed ad libitum. Total dry matter and roughage intake, and apparent digestibilites of organic matter and neutral detergent fiber were improved (p<0.01) by UTRS. There was no effect of EuO supplementation on feed intake and nutrient digestibility. Ruminal pH and temperature were not (p>0.05) affected by either roughage sources or EuO supplementation. However, buffaloes fed UTRS had higher ruminal ammonia nitrogen and blood urea nitrogen as compared with RS. Total volatile fatty acid and butyrate proportion were similar among treatments, whereas acetate was decreased and propionate molar proportion was increased by EuO supplementation. Feeding UTRS resulted in lower acetate and higher propionate concentration compared to RS. Moreover, supplementation of EuO reduced methane production especially in UTRS treatment. Protozoa populations were reduced by EuO supplementation while fungi zoospores remained the same. Total, amylolytic and cellulolytic bacterial populations were increased (p<0.01) by UTRS; However, EuO supplementation did not affect viable bacteria. Nitrogen intake and in feces were found higher in buffaloes fed UTRS. A positive nitrogen balance (absorption and retention) was in buffaloes fed UTRS. Supplementation of EuO did not affect nitrogen utilization. Both allantoin excretion and absorption and microbial nitrogen supply were increased by UTRS whereas efficiency of microbial protein synthesis was similar in all treatments. Findings of present study suggested that EuO could be used as a feed additive to modify the rumen fermentation in reducing methane production both in RS and UTRS. Feeding UTRS could improve feed intake and efficiency of rumen fermentation in swamp buffaloes. However, more research is warranted to determine the effect of EuO supplementation in production animals.