• Title/Summary/Keyword: Sustainable supply

Search Result 470, Processing Time 0.031 seconds

A Study on the Current Condition of Quality Differentiation of the Apartment Unit Quality Planned by Domestic Housing Companies (국내주택업체의 단위세대 품질의 차별화 실태조사연구)

  • Cho, In-Sig;Park, Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.441-445
    • /
    • 2007
  • The mass housing supply policy of the government has resulted in the customer-centered market, and thereby the age of quality competition in the industry. In line with this trend of quality competition, therefore, this preliminary study aims to investigate the requirements of housing product planning to live up to the needs of customers in terms of quality, and thus analyze the types of quality differentiation of a housing product unit in our housing market. It turned out that many cases attempted differentiation in such ways as merely using luxurious finishing materials and instantly popular environment-friendly materials, and combining partial and limited household items with architectural elements of the facility system. The result of this study shows that the differentiation plan of housing product should be customer-centered, and therefore, focus on quality differentiation through organic combination of architecture-oriented plane and interior elements with technology-oriented facility and product elements. Hereby, in the future, housing product planning should include sustainable differentiation plans with reconsideration of concepts that customers have, and the needed procedure.

  • PDF

Trends of Biorefinery as Systems for Bioenergy/Biochemicals Co-Products (바이오-에너지/케미컬 동시-생산 시스템 바이오리파이너리의 동향)

  • Kim, Seong Ho;Kim, Kil-Houn
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.250-261
    • /
    • 2013
  • In order to overcome the 21st century's challenges such as national energy supply security, global warming, and resource depletion, we are struggling to accelerate the paradigm shift in our life style from fossil fuel-based economy to biomass-based economy. In the context of sustainable bioeconomy revitalization, we comprehensively review the development status of the biorefinery as a system for bioenergy/biochemicals co-products on the basis of the various categories according to six criteria.

A Review on the Development Direction of Agricultural Outlook Program Using AHP Approach (AHP기법을 이용한 농업관측사업 중장기 발전방향 탐색)

  • Kim, Yean-Jung;Han, Hye-Sung;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3753-3759
    • /
    • 2015
  • The purpose of this study is to analyze the outcomes of experts' survey for the agricultural outlook program, and finally suggests the direction and long-term plan for the improvement of this program. Agents and consultants in the agricultural outlook center were surveyed in order to develop a long-term plan and improvement direction for this agricultural outlook program, and the AHP(Analytic Hierarchy Process) was used for analysis. The survey was carried out on 70 experts in Agricultural Outlook Center and finally, the statistical effective 24 questionnaires were used to analyze. The analysis showed that the most important factor for its long-term improvement plan was the enhancement of timeliness in overall. Particularly, outlook agents weighted more on timeliness for long-term planning, but consultants on accuracy.

Vulnerability AssessmentunderClimateChange and National Water Management Strategy

  • Koontanakulvong, Sucharit;Suthinon, Pongsak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.204-204
    • /
    • 2016
  • Thailand had set the National Water Management Strategy which covered main six areas in the next 12 years, i.e., by priority: (1) water for household, (2) water for agricultural and industrial production, (3) water for flood and drought management, (4) water for quality issue, (5) water from forest conservation and soil erosion protection, (6) water resources management. However due to the climate change impact, there is a question for all strategies is whether to complete this mission under future climate change. If the impact affects our target, we have to clarify how to mitigate or to adapt with it. Vulnerability assessment was conducted under the framework of ADB's (with the parameters of exposure, sensitivity and adaptive capacity) and the assessments were classified into groups due to their different characteristic and the framework of the National Water Management Strategy, i.e., water supply (rural and urban), water for development (agriculture and others), water disasters (floods (flash, overflow), drought, water quality). The assessments identified the parameters concerned and weight factors used for each groups via expert group discussions and by using GIS mapping technology, the vulnerability maps were produced. The maps were verified with present water situation data (floods, drought, water quality). From the analysis result of this water resources management strategy, we found that 30% of all projects face the big impacts, 40% with low impact, and 30% for no impact. It is clear that water-related agencies have to carefully take care approximately 70% of future projects to meet water resources management strategy. It is recommended that additional issues should be addressed to mitigate the impact from climate risk on water resource management of the country, i.e., water resources management under new risk based on development scenarios, relationship with area-based problems, priority definition by viewpoints of risk, vulnerability (impact and occurrence probability in past and future), water management system in emergency case and water reserve system, use of information, knowledge and technology in management, network cooperation and exchange of experiences, knowledge, technique for sustainable development with mitigation and adaptation, education and communication systems in risk, new impact, and emergency-reserve system. These issues will be described and discussed.

  • PDF

Climate change assessment on sustainable water supply on multi-purpose dams in Nakdong River Basin (AR5 RCP 시나리오 기반 낙동강유역 다목적댐 기후변화 대응 능력 평가)

  • Kim, Jung Min;Park, Jin Hyeog;Jang, Suhyung;Kang, Hyun woong;Ryoo, Kyongsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.203-203
    • /
    • 2017
  • IPCC 5차보고서의 기후변화 전망에 따르면 우리나라를 포함한 동아시아 지역의 연강수량은 전반적으로 증가되나, 기온상승, 강우강도 증가 및 강수일수의 감소도 예상되고 있어 극한홍수 및 극한가뭄의 위험성은 높을 것으로 전망되고 있다. 즉, 연강수량 증가에 따른 미래의 용수공급 안정성이 높아지는 것이 아니라 짧은 기간 내 집중호우에 따른 홍수위험성 증가의 의미가 크며, 강수일수 감소 및 기온상승은 증발산량 증가로 실제 저수지에서 활용될 수 있는 물의 양이 감소할 수 있다는 것이다. 국가수자원장기종합계획에서도 미래 극한가뭄의 강도, 규모 및 지속기간이 커질 것으로 전망하고 있어, 국내 용수공급의 대부분을 차지하는 다목적댐의 기후변화 대응 용수공급능력을 평가하여 극한 물 부족에 대한 사전대응계획과 효율적 운영방안을 수립할 필요가 있다. 특히, 국내 다목적댐 저수지 운영은 홍수기(6.20. ~ 9.30.) 유입량 크게 의존하고 있으며, 실제 과거에는 용수공급에 필요한 유입량의 대부분은 홍수기에 유입되었다. 그러나 지난 2015년 소양강댐과 보령댐 지역의 계절별, 지역별 강수패턴 변화와 같이 기후변화 영향에 따른 강수의 시 공간적 변동성 가속화는 다목적댐의 용수공급 불확실성이 갈수록 심화될 수 있음을 시사하고 있다. 따라서 본 연구에서는 AR5기반의 52개 기후변화 시나리오(26개 GCM, 2개의 RCP 시나리오)를 이용하여 낙동강 다목적댐 유입량을 산정한 후, 낙동강 유역 다목적댐의 기후변화 대응 용수공급 안정성을 평가하였다. 결과적으로 기존 관측자료 기반의 다목적댐 가뭄대응 저수지 운영기준은 미래 기후변화에 따른 용수공급 안정성 확보에 어려움이 있을 것으로 예상되며, 기후변화 시나리오를 반영한 가뭄대응 운영기준 개발이 필요한 것으로 분석되었다.

  • PDF

Accessing socio-economic and climate change impacts on surface water availability in Upper Indus Basin, Pakistan with using WEAP model.

  • Mehboob, Muhammad Shafqat;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.407-407
    • /
    • 2019
  • According to Asian Development Bank report Pakistan is among water scarce countries. Climate scenario on the basis IPCC fifth assessment report (AR5) revealed that annual mean temperature of Pakistan from year 2010-2019 was $17C^o$ which will rise up to $21C^o$ at the end of this century, similarly almost 10% decrease of annual rainfall is expected at the end of the century. It is a changing task in underdeveloped countries like Pakistan to meet the water demands of rapidly increasing population in a changing climate. While many studies have tackled scarcity and stream flow forecasting of the Upper Indus Basin (UIB) Pakistan, very few of them are related to socio-economic and climate change impact on sustainable water management of UIB. This study investigates the pattern of current and future surface water availability for various demand sites (e.g. domestic, agriculture and industrial) under different socio-economic and climate change scenarios in Upper Indus Basin (UIB) Pakistan for a period of 2010 to 2050. A state-of-the-art planning tool Water Evaluation and Planning (WEAP) is used to analyze the dynamics of current and future water demand. The stream flow data of five sub catchment (Astore, Gilgit, Hunza, Shigar and Shoyke) and entire UIB were calibrated and validated for the year of 2006 to 2011 using WEAP. The Nash Sutcliffe coefficient and coefficient of determination is achieved ranging from 0.63 to 0.92. The results indicate that unmet water demand is likely to increase severe threshold and the external driving forces e.g. socio-economic and climate change will create a gap between supply and demand of water.

  • PDF

Sustainable Development Plan for Domestic Forest Aggregate Development according to Transport Distance (운반거리에 따른 국내 산림골재 개발의 지속 개발 방안)

  • Lee, Dong-Kil;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.495-503
    • /
    • 2021
  • Aggregate is a major natural resource used in SOC construction, such as housing, roads, ports, etc., and is a fundamental material for national construction. Although aggregates account for only about 4% of the construction cost, aggregates occupy about 80% of the construction volume and are essential factors that determine the quantity and quality of buildings. For river, underwater, riverbed, sea, and land aggregates, it is difficult to rapidly increase the production of aggregates when there is difficulty in supply and demand due to environmental problems and limited resources during production, whereas forest aggregates are relatively easy to increase production. Forest aggregates are considered promising as alternative aggregate resources in the future when reducing other aggregates due to their abundance of natural resources, and are an effective aggregate source that can flexibly respond to aggregate demand in accordance with well-organized plans and policies. This study proposed the plan for activating the development of forest aggregates in the case of long and short transport distances, which is a factor that has a great influence on the development, and measures for the current difficulties in forest aggregate development

Estimation of Crop Water Requirement Changes Due to Future Land Use and Climate Changes in Lake Ganwol Watershed (간월호 유역의 토지이용 및 기후변화에 따른 논밭 필요수량 변화 추정)

  • Kim, Sinaee;Kim, Seokhyeon;Hwang, Soonho;Jun, Sang-Min;Song, Jung-Hun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.61-75
    • /
    • 2021
  • This study aims to assess the changes in crop water requirement of paddy and upland according to future climate and land use changes scenarios. Changes in the spatiotemporal distribution of temperature and precipitation are factors that lower the stability of agricultural water supply, and predicting the changes in crop water requirement in consideration of climate change can prevent the waste of limited water resources. Meanwhile, due to the recent changes in the agricultural product consumption structure, the area of paddy and upland has been changing, and it is necessary to consider future land use changes in establishing an appropriate water use plan. Climate change scenarios were derived from the four GCMs of the CMIP6, and climate data were extracted under two future scenarios, namely SSP1-2.6 and SSP5-8.5. Future land use changes were predicted using the FLUS (Future Land Use Simulation) model. Crop water requirement in paddy was calculated as the sum of evapotranspiration and infiltration based on the water balance in a paddy field, and crop water requirement in upland was estimated as the evapotranspiration value by applying Penman-Monteith method. It was found that the crop water requirement for both paddy and upland increased as we go to the far future, and the degree of increase and variability by time showed different results for each GCM. The results derived from this study can be used as basic data to develop sustainable water resource management techniques considering future watershed environmental changes.

A Study of Useability of Ecosystem Service Assessment on Strategic Environmental Assessment (전략환경영향평가 시 생태계서비스 평가 결과의 활용가능성에 관한 연구)

  • Park, Yoon-Sun;Kim, Choong-Ki;Lee, Who-Seung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.115-126
    • /
    • 2021
  • Strategic Environmental Impact Assessment (SEA) is a decision-making process taking into account the environmental impact, economic and social impact of policies, plans, and programs at the higher stage prior to the project plan for promoting sustainable development. In this study, we analyzed the process and criteria for selecting appropriate alternatives when establishing development plan in SEA. First, the criteria for estimating changes in ecosystem services following the implementation of development project of industrial complex were presented. Second, alternative evaluations were conducted through an analysis of ecosystem service scenarios to explore suitable alternatives in Anseong. As a result, the environmental quality of selected area as the existing project site deteriorated according to the implementation of the project, and the dimensional reduction technique confirmed that the change in ecosystem service factors in project area was the optimal location. In addition, the results of the scenario assessment to explore suitable alternatives in Anseong City showed that the existing site had large capacity in terms of water quality control services (scenario 1), scenario 2 in terms of preconditioning services, and scenario 3 in terms of water supply services. The guidance of Ecosystem service assessment is expected to be available in decision-making of large-scale strategies (e.g., SEA) and projects by presenting more quantitative criteria for determining the adequacy and location feasibility of development plans and policy plans. This is expected to require various support, including legislation and revision of related laws, believed to be supported by advanced research.

Current and Future Trends of District Heating System for a Sustainable Future and Greenhouse Gas Reduction (온실가스 감축 및 지속가능 미래를 위한 집단에너지사업 방향)

  • Jung, Min-Jung;Park, Jin-Kyu;Ahn, Deog-Yong;Lee, Nam-Hoon
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.377-384
    • /
    • 2017
  • Amid growing concerns about energy security, energy prices, economic competitiveness, and climate change, district heating (DH) system has been recognized for its significant benefits and the part it can play in efficiently meeting society's growing energy demands while reducing environmental impacts. Policy makers often need to quantify the fuel and carbon dioxide ($CO_2$) emissions savings of DH system compared to conventional individual heating (IH) system in order to estimate its actual emissions reductions. The objective of this paper is to calculate energy efficiency and $CO_2$ emissions saving, and to propose the future direction for DH system in Korea. DH system achieved total system efficiencies of 67.9% compared to 54.1% for IH system in 2015. DH system reduced $CO_2$ emissions by $381,311ton-CO_2$ (4.1%) compared to IH system. The results suggest that DH system is more preferred than IH system using natural gas. In Korea, the aim is to reduce dependence on fossil fuels and to use energy more efficiently. DH system have significant potential with regard to achieving this aim, because DH system are already integrated with power generation in the electricity since combined heating and power (CHP) are used for heat supply. Although the future conditions for DH may look promising, the current DH system in Korea must be enhanced in order to handle future competition. Thus, the next DH system must be integrated with multiple renewable energy and waste heat energy sources.