• Title/Summary/Keyword: Sustainable Intelligence

Search Result 101, Processing Time 0.02 seconds

Designing Dataset for Artificial Intelligence Learning for Cold Sea Fish Farming

  • Sung-Hyun KIM;Seongtak OH;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.208-216
    • /
    • 2023
  • The purpose of our study is to design datasets for Artificial Intelligence learning for cold sea fish farming. Salmon is considered one of the most popular fish species among men and women of all ages, but most supplies depend on imports. Recently, salmon farming, which is rapidly emerging as a specialized industry in Gangwon-do, has attracted attention. Therefore, in order to successfully develop salmon farming, the need to systematically build data related to salmon and salmon farming and use it to develop aquaculture techniques is raised. Meanwhile, the catch of pollack continues to decrease. Efforts should be made to improve the major factors affecting pollack survival based on data, as well as increasing the discharge volume for resource recovery. To this end, it is necessary to systematically collect and analyze data related to pollack catch and ecology to prepare a sustainable resource management strategy. Image data was obtained using CCTV and underwater cameras to establish an intelligent aquaculture strategy for salmon and pollock, which are considered representative fish species in Gangwon-do. Using these data, we built learning data suitable for AI analysis and prediction. Such data construction can be used to develop models for predicting the growth of salmon and pollack, and to develop algorithms for AI services that can predict water temperature, one of the key variables that determine the survival rate of pollack. This in turn will enable intelligent aquaculture and resource management taking into account the ecological characteristics of fish species. These studies look forward to achievements on an important level for sustainable fisheries and fisheries resource management.

"Does Emotional Intelligence Impact Technology Adoption?" : A study on Adoption of Augmented Reality

  • Abhishek Srivastava;Ananya Ray;Arghya Ray;Pradip Kumar Bala;Shilpee A Dasgupta;Yogesh K. Dwivedi
    • Asia pacific journal of information systems
    • /
    • v.33 no.3
    • /
    • pp.624-651
    • /
    • 2023
  • The study makes several contributions to not only the adoption literature by examining the influence of Emotional Intelligence (EI) and Big-Five traits on adoption of Augmented Reality (AR) but also given its utility in both industry and research, it contributes to the interesting inter-disciplinary domain of psychology, information systems, and human behaviour. A quantitative based approach using a sample of 275 respondents was undertaken. It is found that emotional intelligence influence both perceived ease-of-use and perceived usefulness. They in turn influence intention to use. Another important observation is that personality traits (openness and agreeableness) have a significant moderating effect on the relation between attitude and intention to use AR. This research will help academicians and executives working on the adoption of AR in various sectors ranging from retail industry to the education sector. The originality of this study is that it explores the impact of EI on the acceptance of AR and helps in extending the literature in interdisciplinary research.

A new viewpoint on stability theorem for engineering structural and geotechnical parameter

  • Timothy Chen;Ruei-Yuan Wang;Yahui Meng;Z.Y. Chen
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.475-487
    • /
    • 2024
  • Many uncertainties affect the stability assessment of rock structures. Some of these factors significantly influence technology decisions. Some of these factors belong to the geological domain, and spatial uncertainty measurements are useful for structural stability analysis. This paper presents an integrated approach to study the stability of rock structures, including spatial factors. This study models two main components: discrete structures (fault zones) and well known geotechnical parameters (rock quality indicators). The geostatistical modeling criterion are used to quantify geographic uncertainty by producing simulated maps and RQD values for multiple equally likely error regions. Slope stability theorem would be demonstrated by modeling local failure zones and RQDs. The approach proided is validated and finally, the slope stability analysis method and fuzzy Laypunov criterion are applied to mining projects with limited measurement data. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and fuzzy theory.

Recent Trends on Smart City Security: A Comprehensive Overview

  • Hyuk-Jun, Kwon;Mikail Mohammed, Salim;Jong Hyuk, Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.118-129
    • /
    • 2023
  • The expansion of smart cities drives the growth of data generated from sensor devices, benefitting citizens with enhanced governance, intelligent decision-making, optimized and sustainable management of available resources. The exposure of user data during its collection from sensors, storage in databases, and processing by artificial intelligence-based solutions presents significant security and privacy challenges. In this paper, we investigate the various threats and attacks affecting the growth of future smart cities and discuss the available countermeasures using artificial intelligence and blockchain-based solutions. Open challenges in existing literature due to the lack of countermeasures against quantum-inspired attacks are discussed, focusing on postquantum security solutions for resource-constrained sensor devices. Additionally, we discuss future research and challenges for the growing smart city environment and suggest possible solutions.

Linking Social Network to Education: The Potentials and Challenges

  • RHA, Ilju;BYUN, Hyunjung;KIM, Younyoung;HONG, Seoyon
    • Educational Technology International
    • /
    • v.13 no.1
    • /
    • pp.1-25
    • /
    • 2012
  • Despite the relatively short history of Social Network Sites or Services (SNS), it has quickly gained popularity with more than seven hundred million users all over the globe. The SNS emerged as one of the strongest cultural influences for the contemporary society. The SNS would provide both chances and challenges for Education. The main purpose of the article was to explore the way education react and adapt to the emergence of social network and SNS. It tried to provide major theoretical grounds that bridge education and social network. In the due process, the researchers have examined the curriculum and instructional design process of education from the perspective of disruptive and sustainable aspect of SNS technology. Consequently, four major theoretical grounds were identified and reviewed: Gibson's theory of affordance, Vygotsky's social constructivism, Rha's human visual intelligence theory, and the network theory. By investigating these theories, the educational potentials of social network and SNS were emerged. The SNS was viewed as a new medium with abundant potentials of expanding the learning space, empowering the affective aspects of learning, and facilitating the formation of group intelligence. Finally, some future implications and challenges of SNS were suggested.

Exploratory Analysis of AI-based Policy Decision-making Implementation

  • SunYoung SHIN
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.203-214
    • /
    • 2024
  • This study seeks to provide implications for domestic-related policies through exploratory analysis research to support AI-based policy decision-making. The following should be considered when establishing an AI-based decision-making model in Korea. First, we need to understand the impact that the use of AI will have on policy and the service sector. The positive and negative impacts of AI use need to be better understood, guided by a public value perspective, and take into account the existence of different levels of governance and interests across public policy and service sectors. Second, reliability is essential for implementing innovative AI systems. In most organizations today, comprehensive AI model frameworks to enable and operationalize trust, accountability, and transparency are often insufficient or absent, with limited access to effective guidance, key practices, or government regulations. Third, the AI system is accountable. The OECD AI Principles set out five value-based principles for responsible management of trustworthy AI: inclusive growth, sustainable development and wellbeing, human-centered values and fairness values and fairness, transparency and explainability, robustness, security and safety, and accountability. Based on this, we need to build an AI-based decision-making system in Korea, and efforts should be made to build a system that can support policies by reflecting this. The limiting factor of this study is that it is an exploratory study of existing research data, and we would like to suggest future research plans by collecting opinions from experts in related fields. The expected effect of this study is analytical research on artificial intelligence-based decision-making systems, which will contribute to policy establishment and research in related fields.

A Study on the Analysis of Agricultural and Livestock Operations Using ICT-Based Equipment

  • Gokmi, Kim
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.215-221
    • /
    • 2020
  • The paradigm of agriculture is also changing to address the problem of food shortages due to the increase of the world population, climate conditions that are increasingly subtropical, and labor shortages in rural areas due to aging population. With the development of Information Communication Technology (ICT), our daily lives are changing rapidly and heralds a major change in agricultural management. In a hyper-connected society, the introduction of high-tech into traditional Agriculture of the past is absolutely necessary. In the development process of Agriculture, the first generation produced by hand, the second generation applied mechanization, and the third generation introduced automation. The fourth generation is the current ICT operation and the fifth generation is artificial intelligence. This paper investigated Smart Farm that increases productivity through convergence of Agriculture and ICT, such as smart greenhouse, smart orchard and smart Livestock. With the development of sustainable food production methods in full swing to meet growing food demand, Smart Farming is emerging as the solution. In overseas cases, the Netherlands Smart Farm, the world's second-largest exporter of agricultural products, was surveyed. Agricultural automation using Smart Farms allows producers to harvest agricultural products in an accurate and predictable manner. It is time for the development of technology in Agriculture, which benchmarked cases of excellence abroad. Because ICT requires an understanding of Internet of Things (IoT), big data and artificial intelligence as predicting the future, we want to address the status of theory and actual Agriculture and propose future development measures. We hope that the study of the paper will solve the growing food problem of the world population and help the high productivity of Agriculture and smart strategies of sustainable Agriculture.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

4th Industry Revolution and 4G Water (4차 산업혁명과 4세대 상하수도)

  • Lee, Doojin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.383-388
    • /
    • 2017
  • The $4^{th}$ Industry Revolution was advocated by Klaud Schwab who is founder of World Economic Forum at the Davos Forum in 2016, and there are big differences on ICT based $4^{th}$ Industry revolution in the aspects of speed, scope and impact compared with the 3rd Industry revolution. Creating new industries and values through technology such as internet of things, cloud, big data, and artificial intelligence are included in the meaning of The $4^{th}$ industry revolution. In this article, the direction of change to water technology in response to the $4^{th}$ Industry revolution is surveyed. 4G Water Infra should minimize environmental impact under the consideration of sustainable development and advanced technologies. To solve the existing water infra problems, it is common and fundamental that the intake water from nature can be regarded as borrowed from nature and it should be returned to natural state with improved water quality. Government, academic organizations and industries should prepare and collaborate together in order to help our country with outstanding capabilities in infrastructure construction and ICT to lead the 4G water technology development.