• Title/Summary/Keyword: Suspension plasma spray (SPS)

Search Result 7, Processing Time 0.018 seconds

The Effects of Water Addition on the Color and Crystalline Phase of Y2O3 Coatings Fabricated by Plasma Suspension Spray

  • Park, Sang-Jun;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Kim, Hyungsun;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.641-646
    • /
    • 2016
  • The effects of water addition on $Y_2O_3$ coatings or thick films prepared by plasma suspension spray (SPS) have been investigated. Water addition in suspension media was found to be effective to control the color of a $Y_2O_3$ coating prepared by SPS. The color changed with water addition at the shortest stand-off distance of 50 mm even if samples had the same crystalline phase. Change was not correlated with fragmentation behavior of liquid suspension inside the plasma jet. Water content over 50 vol% was found to produce unmelted particles, indicating that water suppressed heat transfer to the particles. However, plasma jet temperature was not affected. Instead, the coating fabricated with water addition has higher oxygen and lower carbon content compared to these characteristics of the coating without water addition. This was attributed to the retarded complete evaporation of liquid media from the suspension droplet, resulting in inhibition of excessive heating and evaporation of the molten $Y_2O_3$ droplet. In this regard, crystalline phase development with respect to stand-off distance and water addition was discussed.

Fabrication and Characteristics of Yttria-stabilized Zirconia (7.5 wt% Y2O3-ZrO2) Coating Deposited via Suspension Plasma Spray (서스펜션 플라즈마 용사를 이용한 이트리아 안정화 지르코니아 (7.5 wt% Y2O3-ZrO2) 코팅 증착 및 특성)

  • Lee, Won-Jun;Kwon, Chang-Sup;Kim, Seongwon;Oh, Yoon-Suk;Kim, Hyung-Tae;Lim, Dae-Soon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.445-452
    • /
    • 2013
  • Yttria-stabilized zirconia (YSZ) coatings are fabricated via suspension plasma spray (SPS) for thermal barrier applications. Three different suspension sets are prepared by using a planetary mill as well as ball mill in order to examine the effect of starting suspension on the phase evolution and the microstructure of SPS prepared coatings. In the case of planetary-milled commercial YSZ powder, a deposited thick coating turns out to have a dense, vertically-cracked microstructure. In addition, a dense YSZ coating with fully developed phase can be obtained via suspension plasma spray with suspension from planetary-milled mixture of $Y_2O_3$ and $ZrO_2$.

Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of Y2O3 Coatings Fabricated by Suspension Plasma Spray

  • Kim, Sun-Joo;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.395-402
    • /
    • 2015
  • The suspension plasma spray (SPS) technique has been used to obtain dense $Y_2O_3$ coatings and to overcome the drawbacks of the conventional air plasma spray (APS). SPS uses suspensions containing micrometer or sub-micrometer sized powders dispersed in liquid media. In this study, microstructure developments and mechanical properties have been investigated as functions of particle size of source material and plasma processing parameters such as plasma power and stand-off distance. The microstructure of the coating was found to be highly related to the particle size and the plasma processing parameters, and it was directly reflected in the hardness and the adhesion strength. When fine powder (BET $16.4m^2/g$) was used as a raw material in the suspension, there was, with increasing stand-off distance, a change from a dense structure with a slightly bumpy surface to a porous structure with a cauliflower-like surface. On the other hand, when a coarse powder (BET $2.8m^2/g$) was used, the coating density was lower, with microscopic splats on the surface. Using fine $Y_2O_3$ powders, the coating layer with an optimum short stand-off distance showed a high hardness of approximately 90% of that of sintered $Y_2O_3$ and an adhesion strength several times higher than that of the coating by conventional APS.

Fabrication and Characterization of 7.5 wt% Y2O3-ZrO2 Thermal Barrier Coatings Deposited by Suspension Plasma Spray (서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가)

  • Lee, Won-Jun;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae;Lim, Dae-Soon;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.598-604
    • /
    • 2014
  • Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.

Solid-State Synthesis of Yttirum Oxyfluoride Powders and Their Application to Suspension Plasma Spray Coating (Yttirum Oxyfluoride 원료의 고상합성 및 서스펜션 플라즈마 스프레이 코팅 응용)

  • Park, Sang-Jun;Kim, Hyungsun;Lee, Sung-Min
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.710-715
    • /
    • 2017
  • We synthesized YOF(yttirum oxyfluoride) powders through solid state reactions using $Y_2O_3$ and $YF_3$ as raw materials. The synthesis of crystalline YOF was started at $300^{\circ}C$ and completed at $500^{\circ}C$. The atmosphere during synthesis had a negligible effect on the synthesis of the YOF powder under the investigated temperature range. The particle size distribution of the YOF was nearly identical to that of the mixed $Y_2O_3$ and $YF_3$ powders. When the synthesized YOF powders were used as a raw material for the suspension plasma spray(SPS) coating, the crystalline phases of the coated layer consisted of YOF and $Y_2O_3$, indicating that oxidation or evaporation of YOF powders occurred during the coating process. Based on thermogravimetric analysis, the crystalline formation appeared to be affected by the evaporation of fluoride because of the high vapor pressure of the YOF material.

Preparation of Suspension in La2O3-Gd2O3-ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray (유성구볼밀을 이용한 La2O3-Gd2O3-ZrO2 계 서스펜션준비와 서스펜션 플라즈마용사를 이용한 (La1-xGdx)2Zr2O7 코팅증착과 특성)

  • Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.

Characteristics of Bulk and Coating in Gd2-xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings

  • Kim, Sun-Joo;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.652-658
    • /
    • 2016
  • Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most versatile oxides among the new thermal-barrier-coating (TBC) materials for replacing conventional yttira-stabilized zirconia (YSZ). $Gd_2Zr_2O_7$ exhibits excellent properties, such as low thermal conductivity, high thermal expansion coefficient comparable with that of YSZ, and chemical stability at high temperature. In this study, bulk and coating specimens with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were fabricated in order to examine the characteristics of this gadolinium zirconate system with different Gd content for TBC applications. Especially, coatings with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were produced by suspension plasma spray (SPS) with suspension of raw powder mixtures prepared by planetary milling followed by ball milling. Phase formation, microstructure, and thermal diffusivity were characterized for both sintered and coated specimens. Single phase materials with pyrochlore or fluorite were fabricated by normal sintering as well as SPS coating. In particular, coated specimens showed vertically-separated columnar microstructures with thickness of $400{\sim}600{\mu}m$.