• 제목/요약/키워드: Suspension of Performance

Search Result 659, Processing Time 0.027 seconds

Formation of YSZ Coatings Deposited by Suspension Vacuum Plasma Spraying (서스펜션 진공 플라즈마 용사법을 통한 YSZ 코팅의 형성)

  • Yoo, Yeon Woo;Byon, Eungsun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.460-464
    • /
    • 2017
  • As increasing thermal efficiency of the gas turbine, the performance improvement of thermal barrier coatings is also becoming important. Ytrria stabilized zirconia(YSZ) is the most popular materials for ceramic top coating because of its low thermal conductivity. In order to enhance the performance of thermal barrier coatings for hot sections in the gas turbine, suspension plasma spraying was developed in order to feed nano-sized powders. YSZ coatings formed by suspension plasma spraying showed better performance than YSZ coatings due to its exclusive microstructure. In this research, two YSZ coatings were deposited by suspension vacuum plasma spraying at 400 mbar and 250 mbar. Microstructures of YSZ coatings were analyzed by scanning electron image(SEM) on each spraying conditions, respectively. Crystalline structure transformation was not detected by X-ray diffraction. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings were measured by laser flash analysis. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings containing horizontally oriented nano-sized pores and vertical cracks showed $0.6-1.0W/m{\cdot}K$, similar to thermal conductivity of YSZ coatings formed by atmospheric plasma spraying.

Analysis of Vehicle Handling Performance due to Camber Angle Change of Rear Wheel (후륜 캠버각 변화가 차량 조종성능에 미치는 효과 분석)

  • Park, Seong-Jun;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • In this study, a camber angle generating mechanism for rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Rear left wheel and rear right wheel have 5 different camber angles in the simulations, respectively. Step steer and pulse steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle control of rear suspension. According to the results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel should have the proper orientation for improving the handling performance, respectively.

Effects on Vehicle Handling Performance according to Camber Angle Change of Front and Rear Wheel (전륜 및 후륜 캠버각 변화에 따른 차량 조종성능 효과 분석)

  • Park, Seong-Jun;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-29
    • /
    • 2011
  • In this study, a camber angle generating mechanism for front and rear suspension is suggested. An experimental device is implemented and tested. A full vehicle model with camber angle generating device by using ADAMS/Car is modeled. Step steer simulations are carried out for investigating the effects of vehicle handling performance due to camber angle change of front and rear wheel. According to results, the camber angle of rear suspension affects the vehicle handling performance during both simulations. Therefore, when the vehicle makes the right turn or left turn, left and right wheel of front and rear suspension should have the proper orientation for improving the handling performance, respectively.

Study on an 8-Wheel Suspension to Enhance the Hill-Climbing Performance for a Planetary Exploration Rover

  • Eom, We-Sub;Lee, Joo-Hee;Gong, Hyun-Cheol;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.347-351
    • /
    • 2014
  • Planetary exploration rovers are likely to make a trip on a winding and sloping road of irregular surfaces to the destination in order to accomplish scientific missions. One of the key technologies for rovers is a suspension for traveling and performing exploration missions; the suspension is an essential area of technology for a stable movement of a rover. In this study, an 8-wheel suspension is designed to enable efficient climbing of slopes on a passage to the destination. For the two front wheels among the eight wheels, the moment at the pivot connecting two wheels is derived when the distance between the wheels and the torque of wheels are same. A test experiment was performed to compare the magnitude of moment according to the change in tilt angle and the position of the pivot. Finally, a suspension design considering the position of the pivot was proposed to enhance the hill-climbing performance.

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Performance Evaluation of Control Algorithms for 1/2 Tracked Vehicle with Semi-Active Suspension System (1/2 궤도차량에 대한 반능동 현수장치 제어 알고리즘들의 성능평가)

  • 윤일중;임재필;신휘범;이진규;신민재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.139-147
    • /
    • 2001
  • 2 DOF half-car model with 6 semi-active suspension units is utilized to evaluate the tracked vehicle dynamic performance simulated by several suspension control algorithms. The target of this research is to improve the ride comfort to maintain operator's handling capability when the tracked vehicle travels fast on the rough road. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-active, and on-off systems, are evaluated and analyzed in view point of ride comfort. The dynamic performances of vehicle are expressed and evaluated by vibratory characteristic evaluation curves, performance indices and frequency characteristic curves. The simulation results show that the performances of sky-hook algorithms for ride comfort nearly follow those of full state feedback algorithms and on-off algorithm is recommendatory when the vehicle runs relatively fast.

  • PDF

A Study on the Performance Evaluation of Transmission Suspension Insulators (송전용 현수애자의 성능평가에 관한 연구)

  • Song, Il-Geun;Kim, Chan-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.406-411
    • /
    • 2000
  • This paper presents the results of performance confirmation tests for domestic 20 [Ton] transmission suspension insulators which will be widely utilized in transmission lines. The new test methods such as power arc test, steep-front-of-wave flashover voltage test, and etc. which have been only utilized for the distribution insulators were applied in transmission suspension insulators. The properties of metal and cement used in the 20 [Ton] transmission insulators were also evaluated by the various analysis techniques. Based on the results, we evaluated the performance of the transmission suspension insulators.

  • PDF

A Study on the Suspension System Modeling and Left Eigenstructure Assignment Control Design for Performance Improvement of an Automotive Suspension System (차량 현가시스템 성능 향상을 위한 현가장치 모델링 및 고유구조 지정 제어기 설계 연구)

  • Kim, Joo-Ho;Seo, Young-Bong;Choi, Jae-Weon;Yoo, Wan-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.81-88
    • /
    • 1999
  • A conventional quarter-car suspension system is a single input system with one actuator. Thus, the performance enhancement for ride quality could be limited. In this paper, we propose a novel automotive suspension system for a quarter-car with two independent actuators to improve the control performance. The left eigenstructure assignment method for multi-variable systems has been applied to the proposed novel quarter-car model.

  • PDF

The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System (전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘)

  • Han, In-Sik;Lee, Yoon-Bok;Choi, Kyo-Jun;Kim, Jae-Yong;Jang, Myeong-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

Development of a Suspension Design System based on Simulations (시뮬레이션 기반 현가장치 설계 시스템 개발)

  • Han Hyung Suk;Moon Young-cheol;Moon Seok-jun;Kim Byung-hun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.793-798
    • /
    • 2005
  • The performance functions of a suspension must provide often place conflicting demands upon rail bogie design since design parameters which may be altered to improve performance in one area may simultaneously reduce performance in another area. To determine compromised design parameters, it is need to carry out a number of simulations and trade-off studies. The suspension design system based on computer simulations is presented. The system is composed of analysis solvers and GUI which have functions such as modeling, analysis and sensitivity analysis.

  • PDF