• Title/Summary/Keyword: Suspension element

Search Result 274, Processing Time 0.022 seconds

A New Type of High Bandwidth RF MEMS Switch - Toggle Switch

  • Bernd Schauwecker;Karl M. Strohm;Winfried Simon;Jan Mehner;Luy, Johann-Friedrich
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.237-245
    • /
    • 2002
  • A new type of RF MEMS switch for low voltage actuation, high broadband application and high power capability is presented. Mechanical and electromagnetic simulations of this new RF MEMS switch type are shown and the fabrication process and measurement results are given. The switching element consists of a cantilever which is fixed by a suspension spring to the ground of the coplanar line. The closing voltage is 16V. The switches exhibit low insertion loss (<0.85dB@30GHz) with good isolation (>22dB@30GHz).

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.

Development of a Bone Conduction Vibrator for Portable Acoustic Device (휴대음성장치용 골도 진동자 개발)

  • Kim, Kwang-Suk;Bang, Ki-Chang;Hwang, Gun-Yong;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.613-617
    • /
    • 2008
  • One of the important parts on multimedia era is acoustic ones. With increased demand of smallest multimedia products such as personal digital assistant (PDA) and mobile phones, it is necessary to develop acoustic devices which have higher performance and smaller size. Acoustic parts with various function for hearing impaired persons. This paper introduces a bone conduction vibrator (BCV) for hearing impaired persons to use portable acoustic device without additional devices. For vibration analysis of the BCV, electromagnetic, mechanical and their coupling effects are considered for the analysis. This paper shows that the development of design and analysis technique by finite element method (FEM) of BCV.

  • PDF

A Study Vibration Characteristic of Railway Freight Car's End Beam for Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 함영삼;문경호;홍재성;이동형;서정원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.378-383
    • /
    • 2004
  • Bogie is the connection device between carbody and wheel. It is the core part that exert a important effect on the passenger safety and running safety. Bogie largely consist of bogie frame, suspension, brake, wheel set. Static and Dynamic load have acted on it complexly. So when the bogie is designed, finite element method, static load test, fatigue test running test should be considered. Some bogie frame of high speed railway freight car have the problem. It's end beam was cracked. The crack of the end beam have a bad effect on brake system. ROTEM co. made an improved end beam and applied one set to freight car. this report showed the vibration characteristic which was compared conventional bogie to improved bogie for running safety.

  • PDF

Hot Air forming Analysis of Aluminum Tube (알루미늄 튜브의 열간가스 성형해석)

  • Kim, H.Y.;Lim, H.T.;Hwang, S.H.;Lee, K.D.;Lee, W.S.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.116-119
    • /
    • 2007
  • The application of light weight materials, such as aluminum alloy, has been limited due of their poor formability. Especially, aluminum alloy tube has limited expansion capability at most 15% at room temperature. New manufacturing process, called hot air forming, is introduced to apply aluminum tube to the automotive suspension components which have complex shape and require high expansion ratio about 40%. The process is carried out at the elevated temperature above $500^{\circ}C$, so numerous material properties and process parameters related to the high temperature should be investigated and determined to get a sound product. In this study, the effect of thermal properties and forming parameters such as the temperature of tool, axial feeding and gas pressure are analyzed by using explicit finite element method.

  • PDF

Evaluation of Characteristics of Chevron Spring for Rail Vehicle (철도차량용 셰브론 스프링의 특성 평가)

  • 김완두;김완수;우창수;정승일;김석원;김영구
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.186-192
    • /
    • 2001
  • A chevron rubber spring is used in primary suspension system for rail vehicle. The chevron spring has function which support the load carried and reduce vibration and noise in operation of rail vehicle. The computer simulation using the non-linear finite element analysis program MARC executed to predict and evaluate the load capacity and stiffness for tile chevron spring. The appropriate shape and material properties are proposed to adjust the required characteristics of chevron spring in the three modes of flexibility. Also, several samples of chevron spring are manufactured and experimented. It is shown that the predicted values agree well tile results obtained from experiments.

  • PDF

Prediction and Evaluation of Characteristics of Air Spring for Railroad Vehicle (철도차량용 공기스프링의 특성 예측 및 평가)

  • Kim, Wan-Doo;Hur, Shin;Kim, Suk-Won;Kim, Young-Gu
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.626-633
    • /
    • 2000
  • An air spring which is a part of the railroad vehicle suspension system is used to reduce and absorb the vibration and the noise. Main components of the air spying are a cord reinforced rubber bellows, a upper plate, a lower plate and a stopper rubber spring. The characteristics of the air spring which are the load capacity, the vertical and the horizontal stiffness are depended on the configuration of rubber bellows, the angle of cord and the mechanical properties of cord. The computer simulation using commercial finite element analysis codes are executed to predict and evaluate the load capacity and the stiffness. The appropriate shape and cord angle of the air suing are selected to adjust the required performance of the air spring. Several samples of the air spring are manufectured and experimented. It is shown that the results by computer simulation are in close agreement with the test results.

  • PDF

Evaluation of Characteristics and Useful Life of Rubber Spring for Railway Vehicle

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.122-127
    • /
    • 2008
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

  • PDF

Development of a Leaf Spring Moleling Method for Dynamic Analysis of a Mini-Bus (소형버스의 동역학 해석을 위한 판스프링 모델링기법 개발)

  • Park, T.W.;Yim, H.J.;Lee, G.H.;Park, C.J.;Jeong, I.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.1-6
    • /
    • 1998
  • A leaf spring plays an important role in a passenger bus. Since characteristic of a leaf spring has a hysteresis behaviour, modeling technique for a leaf spring is an important issue for passenger bus analysis. In this paper, modeling technique for a leaf spring is presented. First, non-linear FEM model of a leaf spring is constructed then it is used to make an approximated model to be used in dynamic analysis. The modeling procedure is ex-plained in step by step approach. Then, this model is applied to dynamic analysis of a mini-bus with flexible body and non-linear dynamic force element. The results are compared with test data.

  • PDF