• Title/Summary/Keyword: Suspension element

Search Result 274, Processing Time 0.023 seconds

A Study on Structural Design of Torsion Beam Rear Suspension (토션빔 후륜 현가장치의 구조설계에 관한 연구)

  • Kang Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.146-153
    • /
    • 2005
  • Structural design of the torsion beam rear suspension is investigated by calculating warping of the torsion beam. Since the longitudinal displacement in the cross section of the torsion beam due to torsional moment causes normal stress across the beam restrained from outside at both ends, the profile of torsion beam needs to be designed considering the warping. Warping function of the beam is derived with the parameters of cross section fur the arbitrary shapes of torsion beam profiles assuming thin-walled open section. From comparing the warping calculated for two different beam profiles, the design method for the torsion beam in the view point of low stress is discussed. It is shown that the gusset used to reinforce the torsion beam can be optimized in accordance with warping shape. The method to fix the end point of the gusset is proposed to minimize the stress concentrated on the end point of the gusset produced during torsional moment. The result from finite element analysis shows the stress is minimized when the height of gusset end point is coincident with the point where warping of the beam is minimized.

Development of a Computer Model for the Turning Maneuver Analysis of a Heavy Truck (대형 트럭의 선회 주행특성 해석을 위한 컴퓨터 모델의 개발)

  • 문일동;권혁조;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.121-129
    • /
    • 2000
  • this paper develops a computational model for the turning maneuver analysis of a cabover type heavy truck. The model having 42 degree-of-freedom is developed using ADAMS. Leaf springs used in the front and rear suspension systems are modeled by dividing it three links and joining them with joints. Force and displacement relationship showing nonlinear hysteric characteristics of the leaf spring is measured and modeled with an exponential function. A velocity and force relationship of a shock absorber is measured and modeled with a spline function. And a stabilizer bar is modeled using ADAMS beam element to consider a twisting and bending effect. To verify the developed model an actual vehicle test is performed in the double lane change course with 50kph and 60kph vehicle velocity. In the actual vehicle test lateral acceleration roll angle and yaw rate are measured, The tendency and peak-to-peak values of the actual vehicle test and simultion results are compared each other.

  • PDF

EFFECT OF RESIDUAL STRESS BY SHOT PEENING ON FATIGUE STRENGTH OF LCV LEAF SPRING

  • BAE D. H.;SOHN I. S.;JUNG W. S.;KIM N. S.;JUNG W. W.;PARK S. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.671-676
    • /
    • 2005
  • Spring is one of major suspension part of the light commercial vehicle (LCV). In the manufacturing process it is shot-peened to improve its fatigue strength. In this paper, residual stresses by shot peening were calculated through finite element analysis, and the effects of these residual stresses on fatigue strength of leaf spring were evaluated. Fatigue tests were performed with two kinds of specimens; one is actual leaf spring assembly, and the other is simulated 3-point bending specimen. Fatigue tests were performed under the loading condition that was measured on the proving ground. From the results, the maximum load-fatigue life relation of leaf spring was defined, and test results of 3 point bending specimen are in good agreement with those of leaf spring assembly. The effects of residual stresses by shot peening on fatigue strength of leaf spring is not large in the high load range, however, in the low load range, its effects were not negligible.

Development of a Computer Model of a Large-sized Truck Considering the Frame as a Flexible Body (프레임을 유연체로 고려한 대형트럭 컴퓨터 모델의 개발)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.197-204
    • /
    • 2003
  • This paper develops a computer model for estimating the handling of a cabover type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using ADAMS. A shock absorber, a rubber bush, and a leaf spring aunt a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC/PATRAN. A mode analysis is performed with the frame model using MSC/NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double lane change test is performed with an actual vehicle. In the double lane change, lateral acceleration, yaw rate, and roll angle are measured. Those test results are compared with the simulation results.

Analysis of Soil-Structure Interaction of a Long-Span Bridge Considering Incident Angle of Input Ground Motion (입사각을 고려한 장대교량의 지반-구조물 상호작용 해석)

  • Park, Jang-Ho;Shin, Yung-Seok;Choi, Seung-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • In a long-span bridge which is constructed on soft soil, it is requested to make a plan considering soil-structure interaction, and soil-structure interaction is partially under consideration at the actual bridge plan. Many researches on dynamic behavior of a bridge affected by soil-structure interacting have been accomplished, but it is difficult to estimate dynamic behavior of a bridge on soft soil accurately because of many uncertainties. This paper presents the results about dynamic response of a long-span suspension bridge in the site composed of soft soil considering incident angle of input ground motion. The effect of soft soil was evaluated by the use o computer program SASSI and a long-span suspension bridge was modeled by finite element program MIDAS. The effect of incident angle of input ground motion was investigated on the dynamic response of a long-span bridge.

A Study on Vibration Characteristics of Engine Mount System of a Medium Duty Truck at the Key On/Off (중형트럭 시동 시 엔진마운팅 시스템의 진동 특성 연구)

  • Kuk, Jong-Young;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system have direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key on/off of a medium truck by experiment and simulation. The analysis model consists of the engine, a body including the frame, front and rear suspensions and tires. The force element between the body and the suspension is modeled as a combination of a suspension spring and a damper. The engine shake obtained from the experiment was compared with the result of the computer simulation, and by using the verified computer model, parametric study of the body shake on engine key on/off is performed with changing the stiffness of an engine mount rubber, the engine mount angle, and the position of engine mounts.

The influence of vehicles on the flutter stability of a long-span suspension bridge

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Zhang, Jianren;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.275-292
    • /
    • 2015
  • The presence of traffic on a slender long-span bridge deck will modify the cross-section profile of the bridge, which may influence the flutter derivatives and in turn, the critical flutter wind velocity of the bridge. Studies on the influence of vehicles on the flutter derivatives and the critical flutter wind velocity of bridges are rather rare as compared to the investigations on the coupled buffeting vibration of the wind-vehicle-bridge system. A typical streamlined cross-section for long-span bridges is adopted for both experimental and analytical studies. The scaled bridge section model with vehicle models distributed on the bridge deck considering different traffic flow scenarios has been tested in the wind tunnel. The flutter derivatives of the modified bridge cross section have been identified using forced vibration method and the results suggest that the influence of vehicles on the flutter derivatives of the typical streamlined cross-section cannot be ignored. Based on the identified flutter derivatives, the influence of vehicles on the flutter stability of the bridge is investigated. The results show that the effect of vehicles on the flutter wind velocity is obvious.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Development of the Computer Model Considering Flexible Effect of a Large-sized Truck on the Bump Road (범프 로드에서 대형트럭 프레임의 탄성효과를 고려한 컴퓨터 모델 개발)

  • Moon, Il-Dong;Chi, Chang-Hun;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1202-1210
    • /
    • 2005
  • This paper develops a computer model for estimating the bump characterisitcs of a cat)over type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using MSC.ADAMS. A shock absorber, a rubber bush, and a leaf spring affect a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC.PATRAN. A mode analysis is performed with the frame model using MSC.NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double wheel bump test is performed with an actual vehicle. In the double wheel bump, vortical displacement, velocity, acceleration are measured. Those test results are compared with the simulation results.

Behavior of steel-concrete composite cable anchorage system

  • Gou, Hongye;Wang, Wei;Shi, Xiaoyu;Pu, Qianhui;Kang, Rui
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.115-123
    • /
    • 2018
  • Steel-concrete composite structure is widely applied to bridge engineering due to their outstanding mechanical properties and economic benefit. This paper studied a new type of steel-concrete composite anchorage system for a self-anchored suspension bridge and focused on the mechanical behavior and force transferring mechanism. A model with a scale of 1/2.5 was prepared and tested in ten loading cases in the laboratory, and their detailed stress distributions were measured. Meanwhile, a three-dimensional finite element model was established to understand the stress distributions and validated against the experimental measurement data. From the results of this study, a complicated stress distribution of the steel anchorage box with low stress level was observed. In addition, no damage and cracking was observed at the concrete surrounding this steel box. It can be concluded that the composite effect between the concrete surrounding the steel anchorage box and this steel box can be successfully developed. Consequently, the steel-concrete composite anchorage system illustrated an excellent mechanical response and high reliability.