• Title/Summary/Keyword: Suspension Design

Search Result 821, Processing Time 0.025 seconds

A Study on Active Suspension Control System in Vehicle Bouncing and Pitching Vibration for Improving Ride Comfort (승차감 향상을 위한 차체 상하.피칭 능동 현가제어에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.325-331
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting active robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design control system. Numerical example is shown for validity of robust control system design in active suspension system.

  • PDF

A Study on Adopting Intelligent Control System in Active Suspension Equipment (능동 현가장치에의 지능형 제어시스템 적용에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.287-293
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting intelligent robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design robust control system. Numerical example is shown for validity of intelligent control system design in active suspension system.

  • PDF

A Study on Shape Design of NFR Suspension for Optimal Dynamic Characteristics (NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구)

  • Eun, Gil-Soo;Kim, Noh-Yu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.771-776
    • /
    • 2002
  • Optimal shape of the NFR suspension is studied and developed to improve the dynamic performance and reduce the vibration of the suspension system including a optical head slider. Since accurate position control and stability of the slider motion are highly required in NFR due to the narrower track width and the heavier slider than HDD slider with the low flying height, the dynamic characteristics of the suspension are very important to the mechanical performance of the system. The first natural frequencies in flexural and lateral motion of the suspension are critical factors affecting the dynamics and stability of the flying head, so that the dynamic parameters should be designed properly to avoid an excessive vibration or a crash of the slider on the disk. This paper optimizes the shape of the suspension based on homogenization method in NASTRAN and develops a new suspension shape for NFR system. The suspension is tested on experiment to verify the improvement of the dynamic characteristics.

  • PDF

Optimizing the suspension system of the tilting train (틸팅 열차의 현가장치 최적화)

  • Kim, Jeong-Beom;Park, Tae-Won;Yoon, Ji-Won;Jung, Sung-Pil;Goo, Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1703-1709
    • /
    • 2008
  • The TTX(Tilting Train eXpress) has tilting mechanism that is not existed in the previous train. So, the characteristics of suspension will be different from others. For this reason, TTX needs to be investigated about the suspension in contrast with the previous suspension system. The 2nd damping ratio is very important for a tilting mechanism. Proper value of suspension characteristics should be suggested for the tilting train. In this paper, the optimization of suspension systems for TTX model is introduced by using Design of Experiments (DOE) which is the design of all information-gathering exercises where variation is present. At first, the dynamics model is made for evaluating characteristics of suspension system. Second, using evaluated value, suspension characteristics are analyzed for sensitivity analysis. Finally, using the result of a sensitivity analysis, the suspension systems are optimized.

  • PDF

Study of design parameters on flutter stability of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.331-344
    • /
    • 2006
  • The cable-stayed-suspension hybrid bridge is a cooperative system developed from the traditional cable-stayed and suspension bridges, and takes some advantages of the two bridge systems. It is also becoming a competitive design alternative for some long and super long-span bridges. But due to its great flexibility, the flutter stability plays an important role in the design and construction of this bridge system. Considering the geometric nonlinearity of bridge structures and the effects of nonlinear wind-structure interaction, method and its solution procedure of three-dimensional nonlinear flutter stability analysis are firstly presented. Parametric analyses on the flutter stability of a cable-stayed-suspension hybrid bridge with main span of 1400 meters are then conducted by nonlinear flutter stability analysis, some design parameters that significantly influence the flutter stability are pointed out, and the favorable structural system of the bridge is also discussed based on the wind stability.

Kinematic Design Sensitivity Analysis of Vehicle Suspension Systems using a Numerical Differentiation Method (수치미분에 의한 차량 현가장치의 기구학적 민감도 해석)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.128-137
    • /
    • 1998
  • A numerical approach for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. Compared with the conventional analytical methods, which require explicit derivation of sensitivity equations, the proposed numerical method can be applied to any type of suspension systems without obtaining sensitivity equations, once any kinematic analysis procedure is established. To obtain sensitivity equations, a numerical differentiation algorithm that uses the third order Lagrange polynomial is developed. The algorithm efficiently and accurately computes the sensitivity of various vehicle static design factors with respect to kinematic design variables. Through a suspension design problem, the validity and usefulness of the method is demonstrated.

  • PDF

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

Design and Optimization of Suspension with Optical Flying Head Using Integrated Optimization Frame (통합최적프레임을 사용한 광부상헤드를 탑재한 서스팬션의 최적화)

  • Kim, Ji-Won;Park, Kyoung-Su;Yoon, Sang-Joon;Choi, Dong-Hoon;Park, Young-Pil;Lee, Jong-Soo;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.161-168
    • /
    • 2005
  • This paper optimizes the optical flying head(OFH) suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. The problem formulation for the optimization is suggested to improve the dynamic compliance of OFH and to shift the resonant frequencies caused tracking errors to high frequency domain. Furthermore, the minimization of the effective suspension mass that leads to decrease the so-called 'lift-off' as the disk-head separation acceleration divided by the suspension load is taken into consideration. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. The advanced suspension that reduces the effective mass of the suspension and increases the resonant frequencies of sway and $2^{nd}$ torsion over 10kHz is achieved by using the integrated optimization frame.

  • PDF

Sensitivity Analysis of Steering Wheel Return-ability at Low Speed

  • Cho, HyeonSeok;Lee, ByungRim;Chang, SeHyun;Park, YoungDae;Kim, MinJun;Hwang, SangWoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.167-178
    • /
    • 2017
  • The steering wheel of a vehicle has a typical characteristic of automatically returning to its neutral state when the driver releases it. Steering returnability originated from the tire forces and kingpin moments. It is proportional to the reaction torque that is generated through the rack and column, which are dependent on suspension and steering geometry. It is also important to accurately predict and design it because steering returnability is related to steering performance. In this study, a detailed multibody dynamics model of a vehicle was designed by using ADAMS/Car and simulated for steering returnability. In addition, a tolerance analysis of the chassis system in terms of part dimension and properties has been performed in order to minimize the design parameters. The sensitivity of the selected design parameters was then analyzed via Design of Experiments(DOE). As a result, we were able to obtain the main parameters through a contribution analysis. It can be used to predict steering returnability and improve its performance, which is represented by the angle of restoration and laterality.

Simulation-based Sensitivity Analysis of Suspension Elements of an Articulated Bogie (시뮬레이션에 의한 관절대차 현가요소 민감도 해석)

  • 한형석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.201-207
    • /
    • 2003
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance indices. Suspension elements of 10 and a conicity of wheel are used as design variables. To analyze sensitivity of design variables. the railway vehicle dynamics analysis program AGEM is used. The results show that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability. The safety is not effected by all the design variables.