• Title/Summary/Keyword: Survival and growing rate with density

Search Result 5, Processing Time 0.018 seconds

A Study on Survival and Growth of Ark shell, Scapharca broughtonii with differential density during hanging culture

  • Oh, Bong-Se;Jin, Young-Guk;Jung, Choon-Goo;Lim, Weol-Ae;Kim, Sook-Yang
    • The Korean Journal of Malacology
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • Ark shell Scapharca broughtonii length and total weight growth by density, which was hanging-cultured near the sea area of Yeosu-city, Hoenggan-island (below is Yeosu), showed inverse correlation with density. As for the average growth of shell length by density, the test area of 10 shells showed the best result as 5.21 mm, and it became lower as density became higher. Also, the increase of total weight by density showed the same result, thus on the whole, the increase of average shell length and total weight of 10-20 shell test area showed the better result than the test area of 30-40 shells. In addition, even if the parashell's shell length by density and total weight growth in the sea area of Namhae-gun, Mijo-fishing port (below is Namhae) showed inverse correlation with density, it showed the slighter inverse correlation than the sea area of Yeosu. As for the average growth of shell length by density, the test area of 10 shells showed the best result as 4.55mm, but the average growth of shell length by density in the test area of 20-40 shells appeared to be similar as 3.11, 3.36 and 3.27 mm. On the other hand, as for the increase of total weight by density, the test area of 10-20 shells showed the more increase than the test area of 30-40 shells. In conclusion, it is guessed that the culture density of 20 shells/$0.12m^2$ (166 shells / $1m^2$) would be appropriate when hanging-culturing the shells. At the sea area of A, the survival rate of Scapharca broughtonii parashell was 68-87% by density respectively, and it showed the density-dependent result, while the survival rate of sea area of Namhae, where phytoplankton as prey is abundant, showed the much better result as 91-100%. It is guessed that this may be due to the fact that the quantity of phytoplankton in sea area of Yeosu is just 55.89% of sea area of Namhae. When hanging-culturing the shells, the water temperature by sea area ranged from 16.22 to $25.66^{\circ}C$, salinity 30.07-33.48, pH 8.10-8.45, and DO 4.49-9.65 mg/L.

Optimum Culture Conditions of Sweetpotato Stem Cut for Shoot-transplant Production during Winter (고구마 줄기묘의 원동육묘 적정조건)

  • 안영섭;정병춘;정미남;오용비;송연상;민경수;강윤규
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.6
    • /
    • pp.382-386
    • /
    • 2000
  • This study was conducted to know the optimum conditions for overwinter culture of sweetpotato stems in PE film house. The stems will be used as transplant shoots in the next year instead of sprouts produced from storage roots. Sweetpotato stems were cut at field on harvest season and planted in PE film house under three different conditions of PE film mulching, tunnel, or mulching plus tunnel in comparison with the non-treatment of PE film on October 10 and November 10. The survival rate of sweetpotato stems, which was evaluated on April 10 after overwinter, was higher in the treatment planted on October 10 than that on November 10, and with PE film treatments, it was higher in tunnel or mulching plus tunnel than that of the non-treatment of PE film. The survival rate of sweetpotato stems to planting densities was 95-96% in 10$\times$2cm (333 stems/$m^2$) or in 10$\times$4cm (250 stems/$m^2$) when compared with 10$\times$2cm (500 stems/$m^2$). The survival rate under low temperature showed 95% until 20 days at 5$\pm$1$^{\circ}C$, and 0% within 5 days at 2$\pm$1$^{\circ}C$. From these results, it was concluded that there were optimum conditions that cutting time is middle October, planting density is 10$\times$3cm, and minimum maintenance temperature is 5$^{\circ}C$ in growing conditions of sweetpotato stems. Root yield produced by trans-planting shoots using the stems was similar to yield by shoots produced from roots, and the survival rate was not different among varieties.

  • PDF

A Study on Seedling Production of Jicon Scallop, Chlamys farreri 1. Spawning, Development and Rearing of Larvae (비단가리비 종묘생산을 위한 연구 1. 산란, 발생 및 유생사육)

  • Na Gui-Hwan;Jeong Woo-Geon;Cho Chang-Hwan
    • Journal of Aquaculture
    • /
    • v.8 no.4
    • /
    • pp.307-316
    • /
    • 1995
  • Jicon scallop (Chlamys farreri), as one of new culture species, has been taken a growing interest in Korea recently. Artificial seeds are needed since seeds in natural waters are absolutely short. To develop the better methods for the artificial spawning and the rearing larvae on a large scale, experiments were carried out from July 1993 to May 1994. Mother shells were collected from the area near Tong-yeong and Geoje-do, the southern part of the Korean Penninsula. It was estimated that a period of 2-years was needed to be mother shells after the fertilization. Generally, spawning occourred intermittently from March to August and the maximum occurred in July. A best way for the artificial spawning was a chemical incentive, a 'serotonin injection' in parallel with the exposure and the temperature stimulation. Densities of the fertilized eggs for the normal development was from 30 to 40 per mililiter. It took 27-days from the fertilization to the settling larva averaging $155{\mu}m$ in size with water temperature 11.5\~13.0^{\circ}C$. Isochrysis galvana and Chaetoceros calcitrans with a density of $1,500\times10^4$ cells per ililiter were supplied for rearing the larvae. A proper density of larvae was 10 individuals per mililiter, and the survival rate of larvae from the flowing water system was much better than that of larvae from the still water.

  • PDF

Ecological Studies on the Culture Bed and Production of Young Top Shell, Batillus cornutus in Cheju Island (제주도산 소라의 치패생산 및 서식생태에 관한 연구)

  • Pyen Choong Kyu;Youn Jeong Su
    • Journal of Aquaculture
    • /
    • v.3 no.1
    • /
    • pp.89-125
    • /
    • 1990
  • In order to improve top shell seed production techniques spawning and larvae rearing were done in rearing tanks. Growth of young top shell in the nursing ground were also investigated. For induced spawning, top shells were maintained in still water during night time. Then they were treated with ultra violet iradiated sea water after dried up in air for 60 minutes. Spawning rate were 10 to $39.77\%$. It was found that young top shells moved in the growing grounds from nursing grounds when they reached approximately 30-40mm in shell heignt. Among main food algae for top shell in the natural growing grounds, sea mustard were melted away during June. Therefore, presence of another food algae such as Ecklonia cava or Sargassum spp. seems to be the main limiting factor for survival of top shell during summer. The tolerance of top shells ranging from 30mm to 60mm to low density of seawater for were tested at the temperature between 29.5 and $31.4^{\circ}C$. Hundred percent mortality occoured in 20, 55 and 90 hours after first stocking at the specific gravity of 1.010, 1.015, and 1.020, respectively.

  • PDF

The Growth Performances and Soil Properties of Planted Zelkova serrata Trees according to Fertilization in Harvested Pinus rigida Plantation over 6 Years after Planting (조림지 시비 처리에 따른 리기다소나무 벌채지 내 식재 6년 후 느티나무 조림지 토양 및 조림목 생장 특성)

  • Yang, A-Ram;Cho, Min Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • The objective of this study was to suggest a suitable amount of fertilizer using the changes in growth performances and soil properties for improving survival and quality of Zelkova serrata trees in a harvested Pinus rigida plantation. One-year-old containerized seedlings of Z. serrata were planted with the density of 3000 seedlings $ha^{-1}$ in end of March 2011 at Gwangneung experimental forest, Pocheon. Solid compound fertilizer (N:P:K=3:4:1) were applied yearly in three amounts (control: no fertilization, F1: $180kg\;ha^{-1}$, and F2: $360kg\;ha^{-1}$) every May from 2011 to 2013. We analyzed soil properties before (2011) and after (2012 and 2017) fertilization. And we measured the root collar diameter and height of Z. serrata trees from 2011 to 2016, and then calculated H/D ratio and stem volume. Soil properties at Z. serrata plantation did not show difference according to fertilization level in every investigation year. As time passed after planting, however, concentrations of total nitrogen and available phosphorus were increased from decreased. The growth of root collar diameter, height and stem volume of Z. serrata trees at F2 plot were significantly higher those at the other plots after only 2 years of fertilization. Because Z. serrata tree demand to more nutrient during the early growing period. The survival rate of Z. serrata trees at control plot was significantly lower than that at the other plots. This might be due to Z. serrata trees at control plot had not the upper hand from competition with vegetation at the early in planting. However, the growth of height and stem volume of Z. serrata trees between F1 and F2 plots did not show difference over 6 years after planting. Consequently, we could suggest that Z. serrata trees need to F1 fertilization level for considering improving survival and quality of Z. serrata trees and economical efficiency of plantation managements after harvesting P. rigida plantation.