• Title/Summary/Keyword: Surveillance video

Search Result 490, Processing Time 0.021 seconds

Study on Performance Evaluation of Automatic license plate recognition program using Emgu CV (Emgu CV를 이용한 자동차 번호판 자동 인식 프로그램의 성능 평가에 관한 연구)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1209-1214
    • /
    • 2016
  • LPR(License plate recognition) is a kind of the most popular surveillance technology based on accompanied by a video and video within the optical character recognition. LPR need a many process. One is a localization of car license plates, license plate of size, space, contrast, normalized to adjust the brightness, another is character division for recognize the character optical character recognition to win the individual characters, character recognition, the other is phrase analysis of the shape, size, position by year, the procedure for the analysis by comparing the database of license plate having a difference by region. In this paper, describing the results of performance of license plate recognition S/W, which was implemented using EmguCV, find the location, using the tesseract OCR, which are well known to an optical character recognition engine of open source, the characters of the license plate image capturing angle of the plate, image size, brightness.

A Fast Motion Detection and Tracking Algorithm for Automatic Control of an Object Tracking Camera (객체 추적 카메라 제어를 위한 고속의 움직임 검출 및 추적 알고리즘)

  • 강동구;나종범
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.181-191
    • /
    • 2002
  • Video based surveillance systems based on an active camera require a fast algorithm for real time detection and tracking of local motion in the presence of global motion. This paper presents a new fast and efficient motion detection and tracking algorithm using the displaced frame difference (DFD). In the Proposed algorithm, first, a Previous frame is adaptively selected according to the magnitude of object motion, and the global motion is estimated by using only a few confident matching blocks for a fast and accurate result. Then, a DFD is obtained between the current frame and the selected previous frame displaced by the global motion. Finally, a moving object is extracted from the noisy DFD by utilizing the correlation between the DFD and current frame. We implement this algorithm into an active camera system including a pan-tilt unit and a standard PC equipped with an AMD 800MHz processor. The system can perform the exhaustive search for a search range of 120, and achieve the processing speed of about 50 frames/sec for video sequences of 320$\times$240. Thereby, it provides satisfactory tracking results.

A Method of Pedestrian Flow Speed Estimation Adaptive to Viewpoint Changes (시점변화에 적응적인 보행자 유동 속도 측정)

  • Lee, Gwang-Gook;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.409-418
    • /
    • 2009
  • This paper proposes a method to estimate the flow speed of pedestrians in surveillance videos. In the proposed method, the average moving speed of pedestrians is measured by estimating the size of real-world motion from the observed motion vectors. For this purpose, a pixel-to-meter conversion factor is introduced which is calculated from camera parameters. Also, the height information, which is missing because of camera projection, is predicted statistically from simulation experiments. Compared to the previous works for flow speed estimation, our method can be applied to various camera views because it separates scene parameters explicitly. Experiments are performed on both simulation image sequences and real video. In the experiments on simulation videos, the proposed method estimated the flow speed with average error of about 0.08m/s. The proposed method also showed promising results for the real video.

Analysis on Optimal Threshold Value for Infrared Video Flame Detection (적외선 영상의 화염 검출을 위한 최적 문턱치 분석)

  • Jeong, Soo-Young;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.100-104
    • /
    • 2013
  • In this paper, we present an optimal threshold setting method for flame detection of infrared thermal image. Conventional infrared flame detection methods used fixed intensity threshold to segment candidate flame regions and further processing is performed to decide correct flame detection. So flame region segmentation step using the threshold is important processing for fire detection algorithm. The threshold should be change in input image depends on camera types and operation conditions. We have analyzed the conventional thresholds composed of fixed-intensity, average, standard deviation, maximum value. Finally, we extracted that the optimal threshold value is more than summation of average and standard deviation, and less than maximum value. it will be enhance flame detection rate than conventional fixed-threshold method.

Adaptive Background Modeling for Crowded Scenes (혼잡한 환경에 적합한 적응적인 배경모델링 방법)

  • Lee, Gwang-Gook;Song, Su-Han;Ka, Kee-Hwan;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.597-609
    • /
    • 2008
  • Due to the recursive updating nature of background model, previous background modeling methods are often perturbed by crowd scenes where foreground pixels occurs more frequently than background pixels. To resolve this problem, an adaptive background modeling method, which is based on the well-known Gaussian mixture background model, is proposed. In the proposed method, the learning rate of background model is adaptively adjusted with respect to the crowdedness of the scene. Consequently, the learning process is suppressed in crowded scene to maintain proper background model. Experiments on real dataset revealed that the proposed method could perform background subtraction effectively even in crowd situation while the performance is almost the same to the previous method in normal scenes. Also, the F-measure was increased by 5-10% compared to the previous background modeling methods in the video of crowded situations.

  • PDF

Deep Learning-based Action Recognition using Skeleton Joints Mapping (스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식)

  • Tasnim, Nusrat;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Recently, with the development of computer vision and deep learning technology, research on human action recognition has been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods with high accuracy of 97.45%.

Reliable extraction of moving edge segments in the dynamic environment (동적인 입력환경에서 신뢰성이 있는 이동 에지세그먼트 검출)

  • Ahn Ki-Ok;Lee June-Hyung;Chae Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.45-51
    • /
    • 2006
  • Recently, the IDS(Intrusion Detection System) using a video camera is an important part of the home security systems which start gaining popularity. However, the video intruder detection has not been widely used in the home surveillance systems due to its unreliable performance in the environment with abrupt illumination change. In this paper, we propose an effective moving edge extraction algerian from a sequence image. The proposed algorithm extracts edge segments from current image and eliminates the background edge segments by matching them with reference edge list, which is updated at every frame, to find the moving edge segments. The test results show that it can detect the contour of moving object in the noisy environment with abrupt illumination change.

Estimation of Human Height and Position using a Single Camera (단일 카메라를 이용한 보행자의 높이 및 위치 추정 기법)

  • Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.20-31
    • /
    • 2008
  • In this paper, we propose a single view-based technique for the estimation of human height and position. Conventional techniques for the estimation of 3D geometric information are based on the estimation of geometric cues such as vanishing point and vanishing line. The proposed technique, however, back-projects the image of moving object directly, and estimates the position and the height of the object in 3D space where its coordinate system is designated by a marker. Then, geometric errors are corrected by using geometric constraints provided by the marker. Unlike most of the conventional techniques, the proposed method offers a framework for simultaneous acquisition of height and position of an individual resident in the image. The accuracy and the robustness of our technique is verified on the experimental results of several real video sequences from outdoor environments.

A Posture Based Control Interface for Quadrotor Aerial Video System Using Head-Mounted Display (HMD를 이용한 사용자 자세 기반 항공 촬영용 쿼드로터 시스템 제어 인터페이스 개발)

  • Kim, Jaeseung;Jeong, Jong Min;Kim, Han Sol;Hwang, Nam Eung;Choi, Yoon Ho;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1056-1063
    • /
    • 2015
  • In this paper, we develop an interface for aerial photograph platform which consists of a quadrotor and a gimbal using the human body and the head posture. As quadrotors have been widely adopted in many industries such as aerial photography, remote surveillance, and maintenance of infrastructures, the demand of aerial video and photograph has been increasing remarkably. Stick type remote controllers are widely used to control a quadrotor, but this method is not an intuitive way of controlling the aerial vehicle and the camera simultaneously. Therefore, a new interface which controls the serial photograph platform is presented. The presented interface uses the human head movement measured by head-mounted display as a reference for controlling the camera angle, and the human body posture measured from Kinect for controlling the attitude of the quadrotor. As the image captured by the camera is displayed on the head-mounted display simultaneously, the user can feel flying experience and intuitively control the quadrotor and the camera. Finally, the performance of the developed system shown to verify the effectiveness and superiority of the presented interface.

Statistical Modeling Methods for Analyzing Human Gait Structure (휴먼 보행 동작 구조 분석을 위한 통계적 모델링 방법)

  • Sin, Bong Kee
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.12-22
    • /
    • 2012
  • Today we are witnessing an increasingly widespread use of cameras in our lives for video surveillance, robot vision, and mobile phones. This has led to a renewed interest in computer vision in general and an on-going boom in human activity recognition in particular. Although not particularly fancy per se, human gait is inarguably the most common and frequent action. Early on this decade there has been a passing interest in human gait recognition, but it soon declined before we came up with a systematic analysis and understanding of walking motion. This paper presents a set of DBN-based models for the analysis of human gait in sequence of increasing complexity and modeling power. The discussion centers around HMM-based statistical methods capable of modeling the variability and incompleteness of input video signals. Finally a novel idea of extending the discrete state Markov chain with a continuous density function is proposed in order to better characterize the gait direction. The proposed modeling framework allows us to recognize pedestrian up to 91.67% and to elegantly decode out two independent gait components of direction and posture through a sequence of experiments.

  • PDF