• Title/Summary/Keyword: Surveillance scene

Search Result 60, Processing Time 0.031 seconds

Public Art Work for Creating Hangang Artpark - Focus on A Project 'Thinking of Each Other' -

  • Maeng, Wookjae
    • Journal of recreation and landscape
    • /
    • v.12 no.4
    • /
    • pp.67-78
    • /
    • 2018
  • Hangang Artpark construction is an enterprise founded in 2018 that involved installing public artworks created by 37 different people (teams) in Hangang Park located in Yeouido and Ichon Park. An iconic public space in Seoul, Hangang Park is turning into an even better public space due to the efforts to change the park into an eco-friendly, cultural-artistic space in tandem with the change in times. The objective of the Hangang Artpark construction business is to augment the environmental and scenic value of Hangang not only to provide a space for leisurely activities but also to revive it as a cultural-artistic area. This is a study of the concept and the design and installation processes of "Thinking of each other", a project by the Hangang Artpark construction business. This art piece has been installed in the wetlands and it trails along Ichon Hangang Park, which was created during the environmental recovery project. The piece consists of sculptures molded into animal shapes that are unique to the location and ecology of the area, displayed in harmony with the park's street furniture. By showing the coexistence of animals that existed in Hangang in the past along with the current inhabitants and the natural enemies of these inhabitants, the piece displays an ecofriendly scene. Moreover, by incorporating this piece into the street facilities of the park, such as gazebos, streetlights, surveillance cameras, and perches, the piece exhibits a different kind of street view compared to the installation style of other conventional environmental artworks. The various sculptures are installed along with the street facilities throughout the trail, rather than in a specific location intended for artworks, thereby achieving harmony with the park scene. In so doing, the piece elicits in the beholder an environment-friendly way of thinking, and at the same time, gives them a sense of calm and pleasure. Further, the paper researches the methods of safely installing art pieces in public spaces and of maintaining these installations.

Video Retrieval based on Objects Motion Trajectory (객체 이동 궤적 기반 비디오의 검색)

  • 유웅식;이규원;김재곤;김진웅;권오석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.913-924
    • /
    • 2000
  • This paper proposes an efficient descriptor for objects motion trajectory and a video retrieval algorithm based on objects motion trajectory. The algorithm describes parameters with coefficients of 2-order polynomial for objects motion trajectory after segmentation of the object from the scene. The algorithm also identifies types, intervals, and magnitude of global motion caused by camera motion and indexes them with 6-affine parameters. This paper implements content-based video retrieval using similarity-match between indexed parameters and queried ones for objects motion trajectory. The proposed algorithm will support not only faster retrieval for general videos but efficient operation for unmanned video surveillance system.

  • PDF

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

A Study on the Moving Object Tracking Algorithm of Static Camera and Active Camera in Environment (고정카메라 및 능동카메라 환경에서 이동물체 추적 알고리즘에 관한 연구)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.344-352
    • /
    • 2003
  • An effective algorithm for implementation of which detects moving object from image sequences. predicts the direction of it. and drives the camera in real time is proposed. In static camera, for robust motion detection from a dynamic background scene, the proposed algorithm performs statistical modeling of moving objects and background, and trains the statistical modeling of moving objects and background, and trains the statistical feature of background with the initial parts of sequence which have no moving objects. Active camera moving objects are segmented by following procedure, an improved order adaptive lattice structured linear predictor is used. The proposed algorithm shows robust object tracking results in the environment of static or active camera. It can be used for the unmanned surveillance system, traffic monitoring system, and autonomous vehicle.

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

AN IMAGE SEGMENTATION LEVEL SET METHOD FOR BUILDING DETECTION

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.610-614
    • /
    • 2006
  • In this paper the advanced method of geodesic active contours was developed for the task of building detection from aerial and satellite images. Automatic extraction of man-made structures including buildings, building blocks or roads from remote sensing data is useful for land use mapping, scene understanding, robotic navigation, image retrieval, surveillance, emergency management procedures, cadastral etc. A level set method based on a region-driven segmentation model was implemented with which building boundaries were detected, through this curve propagation technique. The essence of this approach is to optimize the position and the geometric form of the curve by measuring information along that curve, and within the regions that compose the image partition. To this end, one can consider uniform intensities inside objects and the background. Thus, given an initial position of the curve, one can determine global, region-driven functions and provide a statistical description of the inside and outside object area. The calculus of variations and a gradient descent method was used to optimize the variational functional by an iterative steady state process. Experimental results demonstrate the potential of the proposed processing scheme.

  • PDF

Dense Optical flow based Moving Object Detection at Dynamic Scenes (동적 배경에서의 고밀도 광류 기반 이동 객체 검출)

  • Lim, Hyojin;Choi, Yeongyu;Nguyen Khac, Cuong;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.

Specified Object Tracking Problem in an Environment of Multiple Moving Objects

  • Park, Seung-Min;Park, Jun-Heong;Kim, Hyung-Bok;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • Video based object tracking normally deals with non-stationary image streams that change over time. Robust and real time moving object tracking is considered to be a problematic issue in computer vision. Multiple object tracking has many practical applications in scene analysis for automated surveillance. In this paper, we introduce a specified object tracking based particle filter used in an environment of multiple moving objects. A differential image region based tracking method for the detection of multiple moving objects is used. In order to ensure accurate object detection in an unconstrained environment, a background image update method is used. In addition, there exist problems in tracking a particular object through a video sequence, which cannot rely only on image processing techniques. For this, a probabilistic framework is used. Our proposed particle filter has been proved to be robust in dealing with nonlinear and non-Gaussian problems. The particle filter provides a robust object tracking framework under ambiguity conditions and greatly improves the estimation accuracy for complicated tracking problems.

YOLOv5 based Anomaly Detection for Subway Safety Management Using Dilated Convolution

  • Nusrat Jahan Tahira;Ju-Ryong Park;Seung-Jin Lim;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.217-223
    • /
    • 2023
  • With the rapid advancement of technologies, need for different research fields where this technology can be used is also increasing. One of the most researched topic in computer vision is object detection, which has widely been implemented in various fields which include healthcare, video surveillance and education. The main goal of object detection is to identify and categorize all the objects in a target environment. Specifically, methods of object detection consist of a variety of significant techniq ues, such as image processing and patterns recognition. Anomaly detection is a part of object detection, anomalies can be found various scenarios for example crowded places such as subway stations. An abnormal event can be assumed as a variation from the conventional scene. Since the abnormal event does not occur frequently, the distribution of normal and abnormal events is thoroughly imbalanced. In terms of public safety, abnormal events should be avoided and therefore immediate action need to be taken. When abnormal events occur in certain places, real time detection is required to prevent and protect the safety of the people. To solve the above problems, we propose a modified YOLOv5 object detection algorithm by implementing dilated convolutional layers which achieved 97% mAP50 compared to other five different models of YOLOv5. In addition to this, we also created a simple mobile application to avail the abnormal event detection on mobile phones.

Moving Object Detection Algorithm for Surveillance System (무인 감시 시스템을 위한 이동물체 검출 알고리즘)

  • Lim Kang-mo;Lee Joo-shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.44-53
    • /
    • 2005
  • In this paper, a improved moving object detection algorithm for stable performance of surveillance system in case of iterative moving in limited area and rapidly illuminance change in background scene is proposed. The proposed algorithm is that background scenes are sampled for initializing background image then the sampled fames are divided by block and sum of graylevel value for each block pixel was calculated, respectively. The initialization of background image is that background frame is respectively reconstructed with selecting only the maximum graylevel value and the minimum graylevel value of blocks located at same position between adjacent frames, then reference images of background are set by the reconstructed background images. Moving object detecting is that the current image frame is divided by block then sum of graylevel value for each block pixel is calculated. If the calculated value is out of graylevel range of the initialized two reference images, it is decided with moving objects block, otherwise it is decided background. The evaluated results is that the error rate of the proposed method is less than the error rate of the existing methods from $0.01{\%}$ to $20.33{\%}$ and the detection rate of the proposed method is better than the existing methods from $0.17{\%}\;to\;22.83{\%}$.