• Title/Summary/Keyword: Surveillance scene

Search Result 60, Processing Time 0.028 seconds

A Study on Object Detection Algorithm for Abandoned and Removed Objects for Real-time Intelligent Surveillance System (실시간 지능형 감시 시스템을 위한 방치, 제거된 객체 검출에 관한 연구)

  • Jeon, Ji-Hye;Park, Jong-Hwa;Jeong, Cheol-Jun;Kang, In-Goo;An, Tae-Ki;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.24-32
    • /
    • 2010
  • In this paper we proposed an object tracking system that detects the abandoned and removed objects, which is to be used in the intelligent surveillance applications. After the GMM based background subtraction and by using histogram method, the static region is identified to detect abandoned and removed objects. Since the system is implemented on DSP chip, it operates in realtime and is programmable. The input videos used in the experiment contain various indoor and outdoor scenes, and they are categorized into three different complexities; low, midium and high. By 10 times of experiment, we obtained high detection ratio at low and medium complexity sequences. On the high complexity video, successful detection ratio was relatively low because the scene contains crowdedness and repeated occlusion. In the future work, these complicated situation should be solved.

Target identification for visual tracking

  • Lee, Joon-Woong;Yun, Joo-Seop;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.145-148
    • /
    • 1996
  • In moving object tracking based on the visual sensory feedback, a prerequisite is to determine which feature or which object is to be tracked and then the feature or the object identification precedes the tracking. In this paper, we focus on the object identification not image feature identification. The target identification is realized by finding out corresponding line segments to the hypothesized model segments of the target. The key idea is the combination of the Mahalanobis distance with the geometrica relationship between model segments and extracted line segments. We demonstrate the robustness and feasibility of the proposed target identification algorithm by a moving vehicle identification and tracking in the video traffic surveillance system over images of a road scene.

  • PDF

A Study on Target Selection from Seeker Image of Aerial Vehicle in Sea Environment (해상 탐지 영상에서의 비행체 표적 선정에 관한 연구)

  • Kim, Ki-Bum;Baek, In-Hye;Kwon, Ki-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.708-716
    • /
    • 2017
  • We deal with the target selection in seeker-detection image through network, using the detection information from aerial vehicle and the target information from surveillance and reconnaissance system. Especially, we constrain the sea battle environment, where it is difficult to perform scene-matching rather than land. In this paper, we suggest the target selection algorithm based on the confidence estimation with respect to distance and size. In detail, we propose the generation method of reference point for distance evaluation, and we investigate the effect of pixel margin and target course for size evaluation. Finally, the proposed algorithm is simulated and analyzed through several scenarios.

Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space (공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

Extended Support Vector Machines for Object Detection and Localization

  • Feyereisl, Jan;Han, Bo-Hyung
    • The Magazine of the IEIE
    • /
    • v.39 no.2
    • /
    • pp.45-54
    • /
    • 2012
  • Object detection is a fundamental task for many high-level computer vision applications such as image retrieval, scene understanding, activity recognition, visual surveillance and many others. Although object detection is one of the most popular problems in computer vision and various algorithms have been proposed thus far, it is also notoriously difficult, mainly due to lack of proper models for object representation, that handle large variations of object structure and appearance. In this article, we review a branch of object detection algorithms based on Support Vector Machines (SVMs), a well-known max-margin technique to minimize classification error. We introduce a few variations of SVMs-Structural SVMs and Latent SVMs-and discuss their applications to object detection and localization.

  • PDF

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

Adaptive Background Modeling for Crowded Scenes (혼잡한 환경에 적합한 적응적인 배경모델링 방법)

  • Lee, Gwang-Gook;Song, Su-Han;Ka, Kee-Hwan;Yoon, Ja-Young;Kim, Jae-Jun;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.597-609
    • /
    • 2008
  • Due to the recursive updating nature of background model, previous background modeling methods are often perturbed by crowd scenes where foreground pixels occurs more frequently than background pixels. To resolve this problem, an adaptive background modeling method, which is based on the well-known Gaussian mixture background model, is proposed. In the proposed method, the learning rate of background model is adaptively adjusted with respect to the crowdedness of the scene. Consequently, the learning process is suppressed in crowded scene to maintain proper background model. Experiments on real dataset revealed that the proposed method could perform background subtraction effectively even in crowd situation while the performance is almost the same to the previous method in normal scenes. Also, the F-measure was increased by 5-10% compared to the previous background modeling methods in the video of crowded situations.

  • PDF

A Study on Super Resolution Image Reconstruction for Effective Spatial Identification

  • Park Jae-Min;Jung Jae-Seung;Kim Byung-Guk
    • Spatial Information Research
    • /
    • v.13 no.4 s.35
    • /
    • pp.345-354
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method has proven to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper, we applied the super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and are overlapped at high rate. We constructed the observation model between the HR images and LR images applied with the Maximum A Posteriori(MAP) reconstruction method which is one of the major methods in the super resolution grid construction. Based on the MAP method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Calibration of Omnidirectional Camera by Considering Inlier Distribution (인라이어 분포를 이용한 전방향 카메라의 보정)

  • Hong, Hyun-Ki;Hwang, Yong-Ho
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.63-70
    • /
    • 2007
  • Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.

  • PDF