다양한 분야에서 CCTV가 널리 활용되고 있으며, CCTV의 감시 성능을 개선하기 위한 노력들이 지속되고 있다. 그러나, 정작 감시 성능을 정량적으로 평가하는 방법은 상당히 미비하다. 이에 본 연구는 CCTV 시스템이 대상 공간을 주어진 감시 목적에 부합하게 잘 감시하는가를 정량적으로 평가하는 방법을 제안한다. 먼저 대상 공간의 특정한 위치에서 특정한 방향을 바라보는 객체가 CCTV로 얼마나 정밀하게 관측되는 가를 정량적으로 나타내는 감시 해상도를 정의한다. 정의된 감시 해상도를 대상 공간에서 관심 있는 모든 위치와 방향에 대해 계산하여 감시 목적에 따라 요구되는 최적의 해상도 이상이 성취되는 비율로써 대상 공간에 대한 감시 성능 지수를 산출한다. 제시된 방법을 적용하여 대형 건물 지하주차장에 설치된 CCTV 시스템의 감시 성능을 평가하고 가시화하여 분석하고 개선하는 사례를 기술한다. 제안된 방법은 대상 공간이 감시 목적에 맞게 효과적으로 감시되고 있는지 정량화하여 평가하고, 대상 영역을 요구 성능으로 감시하기 위한 CCTV 시스템 설계의 최적화에 기여한다.
In this paper, we present real-time, accurate face region detection and tracking technique for an intelligent surveillance system. It is very important to obtain the high-resolution images, which enables accurate identification of an object-of-interest. Conventional surveillance or security systems, however, usually provide poor image quality because they use one or more fixed cameras and keep recording scenes without any clue. We implemented a real-time surveillance system that tracks a moving person using pan-tilt-zoom (PTZ) cameras. While tracking, the region-of-interest (ROI) can be obtained by using a low-pass filter and background subtraction. Color information in the ROI is updated to extract features for optimal tracking and zooming. The experiment with real human faces showed highly acceptable results in the sense of both accuracy and computational efficiency.
공공장소에서 의도적으로 유기하는 위험 물체를 감지하는 것은 사회 안전 목적에서 중요하다. 오늘날 영상감시 시스템은 고해상도와 무선 연결 능력의 측면에서의 성능 향상이 요구되고 있다. 이 연구에서는 무선 고해상도 영상 전송 기술을 기반으로 사회 안전 목적의 유기물 감지를 위하여 영상 감시 시스템의 설계를 제안하고 있다. 또한 탐지 성능인 PED, PAT 지수를 향상시키기 위하여 이전의 영상 감시 소프트웨어 구조에 추적 알고리즘이 포함되도록 하였다. 실제 무선 고해상도 영상 전송 시스템 위에 제안된 설계 구조를 구현함으로써, 4.0 Gbps 속도의 전송 성능으로서 전체 시스템의 유효성을 보인다.
본 논문에서는 움직임 감지를 사용하여 영상 해상도를 자동 제어하는 실시간 다중 카메라 영상 감시 시스템을 구현하였다. 평상시에는 4개 채널의 영상을 QVGA급으로 취득한 후 하나의 VGA급 영상으로 통합하여 전송한다. 움직임이 포착되는 경우에는 해당 채널의 영상을 자동으로 확대하여 VGA급으로 취득한 후 나머지 3개 채널의 영상을 QQVGA급으로 줄여서 오버레이한다. 이를 통하여 모든 채널의 영상을 놓치지 않으면서도 전송 대역폭을 늘리지 않고 움직임이 포착된 채널을 확대하여 감시할 수 있다. 0.18 um 공정에서 합성한 최대 동작 주파수는 110 MHz로서 이론상으로 4개의 HD급 카메라를 지원할 수 있다.
본 논문은 초고해상도 기법을 이용한 실시간 저해상도 얼굴 인식 시스템을 제안한다. 기존의 비대면 얼굴인식은 거리에 따라 해상도가 저하되면서 얼굴인식의 성능이 저하되는 한계가 있다. 이러한 문제를 해결하기 위해서 초고해상도 기법에 대한 연구도 진행되었으나 비대면 얼굴인식 전 과정에 대한 통합적인 설계에 관한 연구는 미흡하다. 제안한 비대면 얼굴인식은 저해상도 영상으로 키프레임 검출, 얼굴검출, 초고해상도 기법, 특징추출 및 얼굴인식 결과까지 약 2초 이내에 수행함으로써 먼 거리에서도 비대면 얼굴인식의 성능을 향상하였다. 다양한 형태의 영상에 대한 실험을 통해 제안한 방법은 기존 방법에 비해 실시간 및 성능측면에서 저해상도 얼굴 인식이 우수함을 확인하였다.
Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
International Journal of Fuzzy Logic and Intelligent Systems
/
제15권3호
/
pp.172-179
/
2015
Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.
본 논문에서는 다양한 해상도의 카메라를 사용하는 감시 카메라 네트워크에서 각 사람을 추적하는 새로운 접근 방식을 제안한다. 다수의 비겹침 카메라 상에서 사람 추적 시 기존에 사용되던 사람 특징 정보는 다양한 카메라 시야 조건에 쉽게 영향을 받는다. 이러한 한계를 극복하기 위해 제안하는 시스템은 외모 정보와 함께 얼굴 정보를 활용한다. 일반적으로 감시 카메라로 촬영하는 사람 영상은 해상도가 낮은 경우가 많기 때문에 추적을 용이하게 하기 위해 저해상도 얼굴에서도 유용한 특징을 추출할 수 있어야 한다. 제안하는 추적 방식에서 사람 얼굴 특징을 추출하기 위해 탐지된 얼굴을 정면화한 후 텍스쳐 기반의 특징을 추출한다. 또한 감시 카메라에 포착된 얼굴의 크기가 매우 작은 경우 얼굴을 확대하는 초해상도 기법도 함께 활용한다. 공개된 데이터셋인 Dana36을 이용하여 수행한 실험결과를 통해 제안된 알고리즘의 우수한 성능을 보여준다.
Face Recognition assumes much significance in the context of security based application. Normally, high resolution images offer more details about the image and recognizing a face from a reasonably high resolution image would be easier when compared to recognizing images from very low resolution images. This paper addresses the problem of recognizing faces from a very low resolution image whose size is as low as $8{\times}8$. With the use of CCTV(Closed Circuit Television) and with other surveillance camera-based application for security purposes, the need to overcome the shortcomings with very low resolution images has been on the rise. The present day face recognition algorithms could not provide adequate performance when employed to recognize images from VLR images. Existing methods use super-resolution (SR) methods and Relation Based Super Resolution methods to construct from very low resolution images. This paper uses a learning based super resolution method to extract and construct images from very low resolution images. Experimental results show that the proposed SR algorithm based on relationship learning outperforms the existing algorithms in public face databases.
Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.
Kim, Young-Ouk;Park, Chang-Woo;Sung, Ha-Gyeong;Park, Chang-Han;Namkung, Jae-Chan
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.628-631
/
2003
In this paper, we present real-time, accurate face region detection and tracking technique for an intelligent surveillance system. It is very important to obtain the high-resolution images, which enables accurate identification of an object-of-interest. Conventional surveillance or security systems, however, usually provide poor image quality because they use one or more fixed cameras and keep recording scenes without any cine. We implemented a real-time surveillance system that tracks a moving person using four pan-tilt-zoom (PTZ) cameras. While tracking, the region-of-interest (ROI) can be obtained by using a low-pass filter and background subtraction. Color information in the ROI is updated to extract features for optimal tracking and zooming. The experiment with real human faces showed highly acceptable results in the sense of both accuracy and computational efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.